K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017
  1. A=(25x2-10xy+y2)+(y2-2y+1)+2017

A=(5x-y)2+(y-1)2+2017

  • Vì (5x-y)2 > 0 với mọi x;y (lớn hơn hoặc bằng nhé!!)

(y-1)2 > 0 với mọi y

=> A > 2017 >0 với mọi x và y

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1

16 tháng 8 2017

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

5 tháng 7 2017

Ta có : x2 - 4x + y2 + 2y + 5 = 0

<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0

<=> (x - 2)2 + (y + 1)2 = 0

Mà (x - 2)2 \(\ge0\forall x\)

     (y + 1)2 \(\ge0\forall x\)

Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)

6 tháng 7 2017

còn 2 bài nữa giúp mik đi