Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{3}{6}-\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\)
b) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}=\frac{1}{4}\)
\(a)\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{3}\)
\(b)\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}\)
\(=\frac{1}{4}\)
\(b)\left(1-\frac{1}{2}\right)\div\left(1-\frac{1}{3}\right)\div\left(1-\frac{1}{4}\right)\)
\(=\frac{1}{2}\div\frac{2}{3}\div\frac{3}{4}\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{4}{3}\)
\(=\frac{1\times3\times2\times2}{2\times2\times3}\)
\(=1\)
Bài 1:
câu a: 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
b, (15,25 + 3,75) \(\times\) 4 + ( 20,71 + 5,29)\(\times\) 5
= 19 \(\times\) 4 + 26 \(\times\) 5
= 76 + 130
= 206
c, \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{3}\) - \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{4}\)
= \(\dfrac{2}{5}\) + \(\dfrac{4}{15}\) - \(\dfrac{1}{5}\)
= \(\dfrac{6}{15}\) + \(\dfrac{4}{15}\) - \(\dfrac{3}{15}\)
= \(\dfrac{7}{15}\)
d, 1\(\dfrac{5}{7}\) + 7\(\dfrac{3}{6}\) + 2\(\dfrac{2}{7}\) - 4\(\dfrac{3}{6}\)
= (1 + 2 + \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\)) + ( 7 + \(\dfrac{3}{6}\) - 4 - \(\dfrac{3}{6}\))
= 3 + 1 + 3
= 7
\(4,7\div0,25+5,3\times4\)
\(=18,8+21,2\)
\(=40\)
\(3\times\left(a-2\right)+150=240\)
\(3\times\left(a-2\right)=90\)
\(a-2=30\)
\(a=32\)
\(\dfrac{1}{9}+a+\dfrac{7}{12}=\dfrac{17}{18}\)
\(\dfrac{1}{9}+a=\dfrac{13}{36}\)
\(a=\dfrac{1}{4}\)
\(\left(\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+\dfrac{1}{4}\times\dfrac{1}{5}+\dfrac{1}{5}\times\dfrac{1}{6}+\dfrac{1}{6}\times\dfrac{1}{7}+\dfrac{1}{7}\times\dfrac{1}{8}\right)\times a=\dfrac{9}{16}\)
\(\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\right)\times a=\dfrac{9}{16}\)
\(\left(\dfrac{1}{2}-\dfrac{1}{8}\right)\times a=\dfrac{9}{16}\)
\(\dfrac{3}{8}\times a=\dfrac{9}{16}\)
\(a=\dfrac{3}{2}\)
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
Bài 2
a) \(x\times1\frac{1}{4}=3\frac{3}{4}\)
\(x\times\frac{5}{4}=\frac{15}{4}\)
\(x=\frac{15}{4}.\frac{4}{5}\)
\(x=3\)
b) \(x-\frac{3}{4}=6\times\frac{3}{8}\)
\(x-\frac{3}{4}=\frac{9}{4}\)
\(x=\frac{9}{4}+\frac{3}{4}\)
\(x=3\)
Những câu còn lại tương tự
\(\left(\dfrac{1}{2}+1\right)\times\left(\dfrac{1}{3}+1\right)\times\left(\dfrac{1}{4}+1\right)\times\left(\dfrac{1}{5}+1\right)\times\left(\dfrac{1}{6}+1\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times\dfrac{7}{6}\)
\(=\dfrac{3\times4\times5\times6\times7}{2\times3\times4\times5\times6}\)
\(=\dfrac{7}{2}\)
(
2
1
+1)×(
3
1
+1)×(
4
1
+1)×(
5
1
+1)×(
6
1
+1)
=
3
2
×
4
3
×
5
4
×
6
5
×
7
6
=
2
3
×
3
4
×
4
5
×
5
6
×
6
7
=
3
×
4
×
5
×
6
×
7
2
×
3
×
4
×
5
×
6
=
2×3×4×5×6
3×4×5×6×7
=
7
2
=
2
7