Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1 - 1/2 + 1 - 1/6 + 1 - 1/12 + 1 - 1/20 + 1 - 1/30 + 1 - 1/42 + 1 - 1/56 + 1 - 1/72 + 1 - 1/89
= (1 + 1 + 1 + .... 1 + 1) + (1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90)
= 9 - (1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7 + 1/7x8 + 1/8x9 + 1/9x10)
Mỗi phân số thành phần trong biểu thức () ta tách được như sau:
1/1 x 2 = 1- 1/2
1/2 x 3 = 1/2 - 1/3
1/3 x 4 = 1/3 - 1/4
........
1/9 x 10 = 1/9 - 1/10
Như vậy:
A = 9 - (1-1/2 + 1/2-1/3 + 1/3-1/4 + 1/4-1/5 + 1/5-1/6 + 1/6-1/7 + 1/7-1/8 + 1/8-1/9 + 1/9-1/10)
= 9 - (1 - 1/10)
= 9 - 9/10
= 81/10
Đáp số: 81/10
a)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3.4.5}{2.3.4}=\frac{5}{2}\)
b)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}=\frac{1.2.3}{2.3.4}=\frac{1}{4}\)
( 1- \(\frac{1}{2}\))x( 1- \(\frac{1}{3}\))x( 1- \(\frac{1}{4}\))x( 1- \(\frac{1}{5}\))x( 1- \(\frac{1}{6}\)).
= \(\frac{1}{2}\)x \(\frac{2}{3}\)x \(\frac{3}{4}\)x \(\frac{4}{5}\)x \(\frac{5}{6}\).
= \(\frac{1\times2\times3\times4\times5}{2\times3\times4\times5\times6}\).
= \(\frac{1}{6}\).
\(\frac{4}{5}x\frac{1}{4}+\frac{1}{2}x\frac{4}{5}\)
\(\frac{4}{5}x\left(\frac{1}{4}+\frac{1}{2}\right)\)
\(\frac{4}{5}x\frac{3}{4}=\frac{3}{5}\)
\(\frac{3}{4}x\frac{4}{5}+\frac{5}{6}x\frac{6}{7}x\frac{7}{8}\)
\(\frac{3}{5}+\frac{5}{8}=\frac{49}{40}\)
A) 4/5 x 1/4 + 1/2 x 4/5
= 4/5 x (1/4 + 1/2)
= 4/5 x (1/4 + 2/4)
= 4/5 x 3/4
= 3/5
ko ghi lại đề bài ( phần a)
=8,12x6+8,12x2x4-8,12x0,5x8
=8,12x(6+8-4)
=8,12x10
=81,2
a) \(\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{3}{6}-\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\)
b) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}=\frac{1}{4}\)
\(a)\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{3}\)
\(b)\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}\)
\(=\frac{1}{4}\)
\(b)\left(1-\frac{1}{2}\right)\div\left(1-\frac{1}{3}\right)\div\left(1-\frac{1}{4}\right)\)
\(=\frac{1}{2}\div\frac{2}{3}\div\frac{3}{4}\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{4}{3}\)
\(=\frac{1\times3\times2\times2}{2\times2\times3}\)
\(=1\)