K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=-2 vào (1), ta được:

4+8+2m-1=0

=>2m+11=0

hay m=-11/2

b: \(\text{Δ}=\left(-4\right)^2-4\left(2m-1\right)\)

=16-8m+4

=-8m+20

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>-8m>-20

hay m<5/2

Theo đề, ta có: \(x_1^2+x_2^2+x_1x_2=m^2-2m\)

\(\Leftrightarrow m^2-2m=\left(x_1+x_2\right)^2-x_1x_2\)

\(\Leftrightarrow m^2-2m=\left(-4\right)^2-\left(2m-1\right)\)

\(\Leftrightarrow m^2-2m=16-2m+1=17\)

hay \(m=-\sqrt{17}\)

16 tháng 12 2021

\(C=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}+2\right)+6\sqrt{x}}{x-4}.\left(x-4\right)=2\sqrt{x}\)

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

5:

a: Xét ΔABC vuông tại A có

\(sinC=\dfrac{3}{5}\)

=>\(\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\dfrac{3}{BC}=\dfrac{3}{5}\)

=>BC=5(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>AC=4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)

=>\(tanB=\dfrac{4}{3}\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

b: Xét ΔABF vuông tại A có AE là đường cao

nên \(BE\cdot BF=AB^2\left(1\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BE\cdot BF=BH\cdot BC\)

XétΔABC vuông tại A có AH là đường cao

nên \(CH\cdot CB=CA^2\)

\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

c: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB

=>\(\widehat{MAB}=\widehat{MBA}\)

Xét ΔEAB vuông tại E và ΔHBA vuông tại H có

AB chung

\(\widehat{EAB}=\widehat{HBA}\)

Do đó: ΔEAB=ΔHBA

=>\(\widehat{DAB}=\widehat{DBA}\)

=>DA=DB

\(\widehat{DAB}+\widehat{DAF}=90^0\)

\(\widehat{DBA}+\widehat{DFA}=90^0\)

mà \(\widehat{DAB}=\widehat{DBA}\)

nên \(\widehat{DAF}=\widehat{DFA}\)

=>DA=DF

=>DF=DB

=>D là trung điểm của FB

24 tháng 12 2023

ĐKXĐ: x>=-3/2

\(2x-3\sqrt{2x+3}-7=0\)

=>\(2x+3-3\sqrt{2x+3}-10=0\)

=>\(2x+3-5\sqrt{2x+3}+2\sqrt{2x+3}-10=0\)

=>\(\sqrt{2x+3}\left(\sqrt{2x+3}-5\right)+2\left(\sqrt{2x+3}-5\right)=0\)

=>\(\left(\sqrt{2x+3}-5\right)\left(\sqrt{2x+3}+2\right)=0\)

=>\(\sqrt{2x+3}-5=0\)

=>\(\sqrt{2x+3}=5\)

=>2x+3=25

=>2x=22

=>\(x=\dfrac{22}{2}=11\)

22 tháng 12 2021

C A B E D H K

Gọi DH là khoảng cách thấp nhất từ máy bay đến mặt đất, khi đó AC có độ dài lớn nhất là 2,2m. Dựng hình chữ nhật DHEK => DH = EK

Do BA = BE = BC = 1,5m cố định nên tam giác ACE vuông tại A

Xét tam giác ACE vuông tại A có cos\(\widehat{ECA}\) = \(\dfrac{CA}{CE}=\dfrac{2,2}{3}\) => \(\widehat{ECA}\) \(\approx\) 42o50'

BA = BC => tam giác ABC cân tại B => \(\widehat{BAC}=\widehat{BCA}\) = \(\widehat{ECA}\) \(\approx\) 42o50'

=> \(\widehat{DBK}\) = \(\widehat{BAC}+\widehat{BCA}\) = 2.\(\widehat{BCA}\) = 85o40'

Xét tam giác DBK vuông tại D có: BK = BD. cos\(\widehat{DBK}\) 

                                                            = 4.cos85o40' \(\approx\) 0,3022

=> DH = KE \(\approx\) 1,5 - 0,3022 \(\approx\)1,2 (m)

22 tháng 12 2021

undefined

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Bạn cần giúp bài nào thì bạn nên chỉ rõ bài đó ra.

8 tháng 5 2022

mình cần hết ạ

 

21 tháng 5 2023

`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`

`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`

`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}`    `ĐK: x >= \sqrt{6}/6`

`<=>24x^2-8\sqrt{6}x+4=9x^2+36`

`<=>15x^2-8\sqrt{6}x-32=0`

`<=>x^2-[8\sqrt{6}]/15x-32/15=0`

`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`

`<=>|x-[4\sqrt{6}]/15|=8/5`

`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`

21 tháng 5 2023

Giúp em với ạ

15 tháng 12 2022

3: \(=7-4\sqrt{3}+7+4\sqrt{3}=14\)

4: \(=\left(\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}+3}{3}\right)\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{1}{3}\)