Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Bài 1 :Diện tích hình tròn bằng bình phương bán kính nhân với Pi. Như vậy, nếu đường kình giảm 50% thì bán kính giảm 50%. Khi đó diện tích sẽ bằng: 50% bán kính( nhân) 50% bán kính (nhân) Pi= 25% bán kính nhân Pi= 25% diện tích hình tròn ban đầu. Như vậy diện tích hình tròn giảm đi: 100%-25%= 75%
Bài 2 : Diện tích hình tròn = Số Pi x R^2
1. Lúc chưa tăng bán kính lên 10% thì:
S(1) = Pi x R^2
2. Khi tăng bán kính lên 10% thì:
S(2) = Pi x (110%. R)^2
S(2) = Pi x (1,1.R)^2
S(2) = Pi x 1,21.R^2
3. Diện tích hình tròn tăng lên là:
S(2) - S(1)
= (Pi x 1,21.R^2) - (Pi x R^2)
= (1,21 x Pi x R^2) - (1 x Pi x R^2)
= (Pi x R^2) x (1,21 - 1)
= 0,21 x Pi x R^2
Mà:
S(1) = Pi x R^2
Nên diện tích tăng lên là: 0,21 x S(1)
Hay nói cách khác là tăng lên 21%
Đáp số: 21%
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m