K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2022

Theo nguyên lý chia kẹo Euler, ta có \(C_{5-1}^{3-1}=6\) cách trao giải thưởng

5 tháng 5 2018

Nếu chọn một học sinh nam có 280 cách.

Nếu chọn một học sinh nữ có 325 cách.

Theo qui tắc cộng, ta có 280 +  325 = 605 cách chọn.

Chọn đáp án D.

11 tháng 4 2018

Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý  mỗi khối đều có ít hơn 8 học sinh).

Số cách chọn 8 học sinh từ hai khối là:  .

Số cách chọn 8 học sinh bất kì là:  

Số cách chọn thỏa yêu cầu bài toán: 

Chọn D.

15 tháng 6 2018

Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.

Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.

Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có  cách( có liên quan đến thứ tự).

Theo quy tắc nhân có  cách xếp thỏa yêu cầu.

Chọn C.

22 tháng 4 2017

Đáp án D

28 tháng 12 2017

 

Chọn B

TH1: Nhóm có đúng 3 học sinh có cách chọn

TH2: Nhóm có đúng 4 học sinh có cách chọn

TH3: Nhóm có đúng 5 học sinh có cách chọn

TH4: Nhóm có đúng 6 học sinh có cách chọn

TH5: Nhóm có đúng 7 học sinh có cách chọn

TH6: Nhóm có đúng 8 học sinh có cách chọn

TH7: Nhóm có đúng 9 học sinh có cách chọn

Vậy tổng số có 24 + 72 + 98 + 76 + 35 + 9 + 1 = 315 cách.

 

16 tháng 5 2016

Gọi A là tập hợp mọi cách chọn 4 học sinh trong 12 học sinh

Gọi B là tập hợp cách chọn không thỏa mãn yêu cầu đề bài (tức là chọn đủ học sinh 3 lớp)

Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài

Ta có      A = B\(\cup\) C, B \(\cap\) C = \(\varnothing\)

Theo quy tắc cộng ta có

\(\left|A\right|\) = \(\left|B\right|\) + \(\left|C\right|\) \(\Rightarrow\) \(\left|C\right|\) = \(\left|A\right|\) - \(\left|B\right|\)               (1)

Dễ thấy \(\left|A\right|\) = \(C_{12}^4\) = 495

Để tính \(\left|B\right|\), ta nhận thấy sẽ chọn một lớp có 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh. Vì thế theo quy tắc cộng và phép nhân, ta có:

\(\left|B\right|\) = \(C_5^2\)\(C_4^1\)\(C_3^1\) + \(C_5^1\)\(C_4^2\)\(C_3^1\) + \(C_5^1\)\(C_4^1\)\(C_3^2\) = 120 + 90 + 60 = 270

Thay vào (1) ta có \(\left|C\right|\) = 495 - 270 = 225

Vậy có 225 cách chọn.

16 tháng 5 2016

Số cách chọn 4 học sinh từ 12 học sinh đã cho là : C412=495C124=495

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau :

* Lớp AA có 2 học sinh, các lớp BBCC mỗi lớp 1 học sinh.

 Số cách chọn là : C25.C14.C13=120C52.C41.C31=120

* Lớp BB có 2 học sinh, các lớp AACC mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C24.C13=90C51.C42.C31=90
Lớp CC có 2 học sinh, các lớp AABB mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C14.C23=60C51.C41.C32=60

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là :

120+90+60=270120+90+60=270

Vậy số cách chọn phải tìm là : 495270=225495−270=225 cách.

12 tháng 6 2018

Đáp án C.

Phương pháp:

+) Chọn 2 học sinh nam.

+) Chọn 3 học sinh nữ.

+) Sử dụng quy tắc nhân.

Cách giải:

Số cách chọn 2 học sinh nam C 6 2  

Số cách chọn 3 học sinh nữ C 9 3  

Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là  C 6 2 . C 9 3 .