K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.

Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.

Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có  cách( có liên quan đến thứ tự).

Theo quy tắc nhân có  cách xếp thỏa yêu cầu.

Chọn C.

31 tháng 7 2020

Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.

18 tháng 12 2016

kgm=4^10

Xs=1/4^10

18 tháng 5 2017

Tổ hợp - xác suất

7 tháng 5 2019

Chọn A

Xếp 6 học sinh có 6! cách xếp.

Giữa 6 học sinh có 5 khoảng trống.

Xếp 3 thầy giáo A, B, C vào 5 khoảng trống trên có: A 5 3  cách.

Vậy số cách xếp thỏa mãn yêu cầu là: 6!. A 5 3 = 43200 cách.

Chọn B

27 tháng 2 2023

  `n(\Omega)=6! =720`

`@TH1:` H/s lớp `C` ngồi đầu tiên hoặc cuối cùng.

  `=>` Có `2.1.A_3 ^1 .4! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

`@TH2:` H/s lớp `C` không ngồi đầu cũng không ngồi cuối.

  `=>` Có `4.A_3 ^2 .3! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

Gọi `A:`" H/s lớp `C` không ngồi cạnh h/s lớp `B`"

   `=>n(A)=144.2=288`

`=>P(A)=288/720=2/5`

    `->bb D`

11 tháng 4 2017

Chọn D

Nhóm có tất cả 9 học sinh nên số cách xếp 9 học sinh này ngồi vào một hàng có 9 ghế là 9! = 362880(cách).

Vậy số phần tử không gian mẫu là  n ( Ω ) = 362880

Đặt biến cố A: “ 3 học sinh lớp  không ngồi  ghế liền nhau”.

Giả sử  học sinh lớp 10 ngồi 3 ghế liền nhau. Ta xem 3 học sinh này là một nhóm

+/ Xếp X và 6 bạn còn lại vào ghế có 7! cách xếp.

+/ Ứng với mỗi cách xếp ở trên, có 3! cách xếp các bạn trong nhóm X.

Vậy theo quy tắc nhân ta có số cách xếp là: 7!.3! = 30240 (cách).

Suy ra số cách xếp để  học sinh lớp  không ngồi cạnh nhau là  (cách) .

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là 362880 - 30240 = 332640 (cách)

=> n(A) = 332640

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là