Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(64^2_1x=36x^2_2=48^2\)
=> \(64x_1\le48^2\)
=> \(36x_2\le48^2\)
=> A1 = 6 (cm)
=> A2 = 8 (cm)
=> \(\frac{V_2}{V_1}=\frac{\omega\sqrt{A^2_2-x^2_2}}{\omega\sqrt{A^2_1-x^2_1}}=\frac{\sqrt{A^2_2-x^2_2}}{\sqrt{A^2_1-x^2_1}}=\frac{4}{3\sqrt{3}}\)
Vậy V2 = \(\frac{4.18}{3\sqrt{3}}=8\sqrt{3}\) (cm/giây)
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
T=2pi/4pi=0.5(s) => f=2 sau 5 s nó trở lại trạng thái ban đầu x=4cos(0)=4 vật ở biên
T=1(s)tại t=T/6 . ban đầu t=0 vật ở vtcb sau T/6 vật ở vị trí x=(a căn 3)/2 vì cos dương => -sin <0 => vật đi theo chiều âm . áp dụng ptđộc lâp tg cho v và a tìm nốt dc a
tại \(t=0\) vật tại \(x=5\sqrt{3}\)
\(v>0\)
\Rightarrow \(s=4A+17-5\sqrt{3}\)
sử dung công thức
\(s=2A.\sin\left(\frac{\omega.t1}{2}\right)\)
\Rightarrow t1 = ?
vậy khoảng thời gian nhỏ nhất là \(t=T+t1\)
Chọn đáp án B
Áp dụng công thức độc lập với thời gian cho hai thời điểm t 1 v à t 2 ta được:
x 1 2 + v 1 2 ω 2 = x 2 2 + v 2 2 ω 2 ⇔ x 1 2 − x 2 2 = v 2 2 ω 2 − v 1 2 ω 2 ⇒ ω 2 = v 2 2 − v 1 2 x 1 2 − x 2 2 ⇒ ω = v 2 2 − v 1 2 x 1 2 − x 2 2
Do đó, chu kì dao động của vật là T = 2 π ω = 2 π v 2 2 − v 1 2 x 1 2 − x 2 2 = 2 π x 2 2 − x 1 2 v 1 2 − v 2 2