Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các lực tác dụng lên vật được biểu diễn như hình vẽ. Chọn hệ trục Ox theo hướng chuyển động, Oy vuông góc phương chuyển động.
Áp dụng định luật II Niu – tơn ta được:
Chiếu hệ thức vecto lên trục Ox ta được:
Fcosα - Fms = ma (1)
Chiếu hệ thức vecto lên trục Oy ta được:
Fsinα - P + N = 0 ⇔ N = P - Fsinα (2)
Mặt khác Fms = μtN = μt(P - Fsinα) (3)
Từ (1) và (2) (3) suy ra:
b) Để vật chuyển động thẳng đều (a = 0) ta có:
⇔ Fcosα - μt(P - Fsinα) ⇒ F = 12(N)
a) (3 điểm)
Các lực tác dụng lên vật được biểu diễn như hình vẽ. (1,00đ)
Chọn hệ trục Ox theo hướng chuyển động, Oy vuông góc phương chuyển động.
*Áp dụng định luật II Niu – tơn ta được:
Chiếu hệ thức (*) lên trục Ox ta được: (0,50đ)
Chiếu hệ thức (*) lên trục Oy ta được:
Mặt khác
Từ (1), (2) và (3) suy ra:
b) (1 điểm)
Quãng đường mà vật đi được trong giây thứ 5 là:
S = S 5 – S 4 = 0,5.a. t 5 2 – 0,5.a. t 4 2 = 0,5.1,25. 5 2 - 0,5.1,25. 4 2 = 5,625 m. (1,00đ)
Lực tác dụng lên vật m được biểu diễn trên hình vẽ.
Định luật II Niu-tơn cho:
Chọn hệ trục Oxy với chiều dương là chiều chuyển động theo phương Ox, chiếu phương trình (1) lên:
(Ox): Fcosα- fms= ma (2)
(Oy): N + Fsinα – P = 0 (3)
mà fms= μN (4)
(2), (3) và (4) => F cosα – μ(P- Fsinα ) = ma
=> Fcosα – μP + μFsinα = ma
F(cosα +μsinα) = ma +μmg
=> F =
a) khi a = 1,25 m/s2
Định luật II Newton: \(\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F}+\overrightarrow{F_{ms}}=m\overrightarrow{a}\) (*)
Chiếu (*) lên trục xOy (Với Ox trùng với chiều chuyển động)
Oy: N=P
Ox: \(F-F_{ms}=ma\Leftrightarrow F-N\mu=ma\Leftrightarrow F-P\mu=ma\)
\(\Leftrightarrow F-mg\mu=ma\Leftrightarrow F=ma+mg\mu=1,6\left(N\right)\)
Định luật ll Niu tơn:
\(\overrightarrow{F}+\overrightarrow{F_{ms}}=m\cdot\overrightarrow{a}\)
\(\Rightarrow F\cdot F_{ms}=m\cdot a\)
\(\Rightarrow F=m\cdot a+F_{ms}=m\cdot a+\mu mg=3\cdot2+0,2\cdot3\cdot10=12N\)
Nếu bỏ qua ma sát quãng đường vật đi đc là:
\(S=\dfrac{1}{2}at^2=\dfrac{1}{2}\cdot2\cdot2^2=4m\)
Chọn đáp án D
Để vật chuyển động thẳng đều thì a = 0
Từ ( I ) ta có
= 0,25
a, Theo định luật II Niuton:
\(\overrightarrow{F_{mst}}+\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}=\overrightarrow{0}\left(1\right)\)
Chiếu \(\left(1\right)\) lên chiều chuyển động:
\(a=\dfrac{-F_{mst}+F}{m}=\dfrac{-0,3.4.10+17}{4}=1,25\left(m/s^2\right)\)
b, Quãng đường đi được sau 3s:
\(s=v_0t+\dfrac{1}{2}at^2=\dfrac{1}{2}.1,25.3^2=5,625\left(m\right)\)
Vận tốc của vật sau 3s:
\(v=v_0+at=1,25.3=3,75\left(m/s\right)\)
c, Vật chuyển động thẳng đều khi gia tốc bằng 0
\(\Leftrightarrow F=F_{mst}=\mu.m.g=0,3.4.10=12N\)
Lực tác dụng lên vật: Trọng lực P, phản lực N, lực kéo F và lực ma sát Fms
Áp dụng định luật 2 Niu tơn: \(m.\vec{a}=\vec{F}+\vec{P}+\vec{N}+\vec{F_{ms}}\)
Chiếu lên ox: \(m.a=F\cos\alpha-F_{ms}=F\cos\alpha-\mu N\)(1)
Chiếu lên oy: \(0=F\sin\alpha-P+N\Rightarrow N=P-F\sin\alpha\)(2)
a) Lấy (2) thế vào (1) ta được: \(m.a=F\cos\alpha-\mu(P-F\sin\alpha)\Rightarrow F=\dfrac{m.a+\mu(P-F\sin\alpha)}{\cos\alpha}\)(3)
Thay số ta tìm đc F.
b) Vật chuyển động thẳng đều thì a = 0, thay số vào PT (3) ta tìm đc F
Giai cấp tư sản và giai cấp vô san là đúng