Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x ( km, x>0 )
Thời gian xe máy đi từ A đến B = x/30 (giờ)
Vận tốc xe máy đi từ B về A = 30+10=40km/h
Thời gian xe máy đi từ B về A là x/40 (giờ)
Theo bài ra ta có phương trình :
x/30 - x/40 = 3/4
<=> x( 1/30 - 1/40 ) = 3/4
<=> x.1/120 = 3/4
<=> x = 90 (tm)
Vậy quãng đường AB dài 90km
Vận tốc lúc về: \(35+7=42\) (km/h)
Gọi thời gian về là x>0 (giờ) \(\Rightarrow\) thời gian đi là \(x+\dfrac{1}{2}\) giờ
Quãng đường lúc đi: \(35\left(x+\dfrac{1}{2}\right)\) (km)
Quãng đường lúc về: \(42x\) (km)
Do quãng đường đi và về bằng nhau nên ta có pt:
\(35\left(x+\dfrac{1}{2}\right)=42x\)
\(\Leftrightarrow7x=\dfrac{35}{2}\Rightarrow x=\dfrac{5}{2}\) (giờ)
Độ dài quãng đường: \(S=42.\dfrac{5}{2}=105\) (km)
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Gọi khoảng cách từ A đến B là : x ( km ) ( x > 0 )
thời gian đi từ A đến B là : x/40 ( h )
thời gian đi từ B về A là : x/60 ( h )
vì thời gian về ít hơn thời gian đi 1/2h , nên ta có pt :
x/60 + 1/2 = x/40
\(\Leftrightarrow\dfrac{4x}{240}+\dfrac{120}{240}=\dfrac{6x}{240}\)
\(\Leftrightarrow4x+120=6x\)
\(\Leftrightarrow120=2x\)
\(\Leftrightarrow60=x\left(Tm\right)\)
Vậy khoảng cách từ A đến B là 60 km
có 1/2h=0,5h
gọi thời gian đi từ A đến B của ô tô là x (h) với đk: x>0,5
thời gian ô tô từ về là x-0,5 (h)
quãng đường ô tô đi từ a đến b lúc đi là 40x(km)
quãng đường ô tô đi về là 60(x-0,5) (km)
vì quãng đường ô tô đi và về là như nhau nên ta có pt:
\(40x=60\left(x-0,5\right)\\ \Leftrightarrow40x=60x-30\\ \Leftrightarrow-20x=-30\\ \Leftrightarrow x=1,5\left(nhận\right)\)
vậy quãng đường a đến b dài
\(40\cdot1,5=60\left(km\right)\)
\(30p=0,5h\)
Gọi \(x\left(km\right)\) là độ dài quãng đường AB \(\left(x>0\right)\)
Thời gian đi từ A đến B là: \(\dfrac{x}{36}\left(h\right)\)
Vận tốc đi từ B về A là: \(36+9=45\left(km/h\right)\)
Thời gian đi từ B về A là:\(\dfrac{x}{45}\left(h\right)\)
Vì tổng thời gian đi là 5h nên ta có pt:
\(\dfrac{x}{36}+0,5+\dfrac{x}{45}=5\\ \Leftrightarrow\dfrac{x}{36}+\dfrac{x}{45}=4,5\\ \Leftrightarrow\left(\dfrac{1}{36}+\dfrac{1}{45}\right)x=4,5\\ \Leftrightarrow x=\dfrac{4,5}{\dfrac{1}{36}+\dfrac{1}{45}}=90\left(tm\right)\)
Vậy quãng đường AB dài 90km
Gọi \(x\left(km/h\right)\) là vận tốc lúc đi \(\left(x>0\right)\)
Vận tốc lúc về là: \(x+3\left(km/h\right)\)
Thời gian đi là: \(\dfrac{33}{x}\left(h\right)\)
Thời gian về là: \(\dfrac{62}{x+3}\left(h\right)\)
Đổi: 1 giờ 30 phút = 1,5 giờ
Do thời gian đi nhiều hơn thời gian về 1 giờ 30 phút nên ta có:
\(\dfrac{33}{x}-\dfrac{62}{x+3}=1,5\)
\(\Leftrightarrow\dfrac{33\left(x+3\right)}{x\left(x+3\right)}-\dfrac{62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{33x+99-62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=\dfrac{3}{2}\)
\(\Leftrightarrow3x^2+9x=198-58x\)
\(\Leftrightarrow3x^2+67x-198=0\)
\(\Leftrightarrow x\approx3\left(km/h\right)\left(tm\right)\)
Gọi vận tốc lúc đi là x
=>vận tốc lúc về là x+3
Theo đề, ta có: \(\dfrac{33}{x}-\dfrac{62}{x+3}=\dfrac{3}{2}\)
=>\(\dfrac{33x+99-62x}{x\left(x+3\right)}=\dfrac{3}{2}\)
=>3(x^2+3x)=2(-29x+99)
=>3x^2+6x+58x-198=0
=>3x^2+64x-198=0
=>\(\left[{}\begin{matrix}x\simeq2,74\left(nhận\right)\\x\simeq-24,07\left(loại\right)\end{matrix}\right.\)
Gọi vận tốc lúc đi là x(km/h)(ĐK: x>0)
Vận tốc lúc về là x+3(km/h)
Thời gian đi là \(\dfrac{33}{x}\left(h\right)\)
Thời gian về là \(\dfrac{33+29}{x+3}=\dfrac{62}{x+3}\left(h\right)\)
Theo đề, ta có: \(\dfrac{33}{x}-\dfrac{62}{x+3}=\dfrac{3}{2}\)
=>\(\dfrac{33x+99-62x}{x^2+3x}=\dfrac{3}{2}\)
=>\(3x^2+9x=2\left(-29x+99\right)\)
=>\(3x^2+9x+58x-198=0\)
=>\(3x^2+67x-198=0\)
=>\(\left[{}\begin{matrix}x\simeq2,6\left(nhận\right)\\x\simeq-24,97\left(loại\right)\end{matrix}\right.\)
Gọi vận tốc đi từ A đến B là x ( km/h , x > 0 )
Vận tốc lúc về hơn vận tốc lúc đi là 5km/h => vận tốc lúc về = x + 5(km/h)
Đi từ A đến B với vận tốc x km/h => Thời gian đi = 60/x ( giờ )
Đi từ B về A với vận tốc x + 5 km/h => Thời gian đi = 60/x+5 ( giờ )
Thời gian về ít hơn thời gian đi 1 giờ
=> Ta có phương trình : \(\frac{60}{x}-\frac{60}{x+5}=1\)( 1 )
Phương trình ( 1 ) tương đương với phương trình
\(60\left(x+5\right)-60x=x\left(x+5\right)\)
<=> \(60x+300-60x=x^2+5x\)
<=> \(300=x^2+5x\)( * )
Giải phương trình ( * ) ta được x = 15 và x = -20
Vì x > 0 => x = 15
Vậy vận tốc lúc đi là 15km/h