Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của mảnh vườn là x (m) ( x > 0 | x ∈ N )
Thì chiều rộng của mảnh vườn là x - 10 (m)
Vì mảnh vườn có diện tích 1200m²
Ta có phương trình:
x(x-10)=1200
⇔ x² - 10x - 1200 = 0
⇔ x² + 30x - 40x - 1200 = 0
⇔ ( x - 40 )( x + 30 ) = 0
⇔[x−40=0x+30=0[x−40=0x+30=0
⇔[x=40(TMĐK)x=−30(KTMĐK)[x=40(TMĐK)x=−30(KTMĐK)
Vậy chiều dài của mảnh vườn là 40m
⇒ Chiều rộng của mảnh vườn là: 40 - 10 = 30 (m)
Gọi chiều rộng là x
Chiều dài là x+10
Theo đề, ta có: x(x+10)=1200
\(\Leftrightarrow x^2+10x-1200=0\)
\(\text{Δ}=10^2-4\cdot1\cdot\left(-1200\right)=4900>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-10-70}{2}=-40\left(loại\right)\\x_2=\dfrac{-10+70}{2}=30\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều rộng là 30m; Chiều dài là 40m
Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
Gọi kích thước của hình chữ nhật là x và y (x; y > 0)
Vì chu vi của hình chữ nhật bằng 140m, nên: \(\left(x+y\right)2=140\Leftrightarrow x+y=70\)
Vì làm lối đi dọc theo chu vi và có bề rộng 1m, nên kích thước của hình chữ nhật còn lại là: ( x - 2 ) và ( y - 2 )
Theo đề diện tích của hình chữ nhật còn lại bằng 1064m2, nên ta được:
\(\left(x-2\right)\left(y-2\right)=1064\Leftrightarrow xy-2x-2y=1064\Leftrightarrow xy-2\left(x+y\right)+4=1064\)
\(\Leftrightarrow xy-2.70+4=1064\Leftrightarrow xy=1064+140-4=1200\)
Ta được: \(x+y=70\) và \(xy=1200\), theo định lý Vi-et đảo: x; y là nghiệm của phương trình:
\(t^2-70t+1200=0\). Ta có \(\Delta=b^2-4ac=70^2-4.1.1200=100>0\)
Phương trình có hai nghiệm phân biệt:
\(t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{70+\sqrt{100}}{2}=40\); \(t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{70-\sqrt{100}}{2}=30\)
Vậy nếu x = 40 thì y = 30 và ngược lại.
=> Kích thước của mảnh vườn hình chữ nhật còn lại là 30m và 40m.
Nửa chu vi hình chữ nhật là
400:2=200( m)
Chiều dài là
(200+60):2=130( m)
Chiều rộng là
200-130=70( m)
Đáp số...............................
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
ta xét các tích khi nhân ra thành 150
trong đó ta có tích:
150 = 15x10
15-10=5m
vậy chiều dài = 15m
rộng = 10 m
- giải theo phương pháp lớp chín ý, gọi cd, cr ý