Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng mảnh vườn là x (m) (x>0)
=> Chiều rộng mảnh vườn: x+24 (m)
Diện tích mảnh vườn ban đầu : x(x+24) (m2)
Theo bài ta có : (x+22)(x+3) = x(x+24)+72
x2 + 3x + 22x + 66 = x2 + 24x + 72
\(\Leftrightarrow x=6\) (tmx>0)
Diện tích mảnh vườn: 6.(6+24) = 180 m2
Lời giải:
Gọi chiều rộng mảnh đất là $a$ (m) thì chiều dài mảnh đất là $a+40$ (m)
Chiều dài bể: $(a+40-10-10)=a+20$ (m)
Chiều rộng bể: $a-10-10=a-20$ (m)
Diện tích bể: $(a+20)(a-20)=6000$
$\Leftrightarrow a^2-400=6000$
$\Leftrightarrow a^2=6400$
$\Rightarrow a=\sqrt{6400}=80$ (m)
Vậy chiều rộng mảnh vườn là $80$ m, chiều dài mảnh vườn là $80+40=120$ m
Gọi chiều dài là a, chiều rộng là b (ĐK: a > b > 0)
=> S = ab (2)
Tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2
=> (a + 2).(b + 3) = S + 100
=> ab + 3a + 2b + 6 = S + 100 (1)
Nếu giảm cả chiều dài và chiều rộng của mảnh vườn đó đi 2m thì diện tích giảm 68m2
=> (a - 2).(b - 2) = S - 68
=> ab - 2b - 2a + 4 = S - 68 (3)
Từ (1); (2); (3) ta có hệ PT:
\(\left\{{}\begin{matrix}ab=S\\ab+3a+2b=S+94\\ab-2a-2b=S-72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+4b=188\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=22\left(m\right)\\b=14\left(m\right)\end{matrix}\right.\)
S = ab = 22.14 = 308 (m2)
Gọi chiều dài của mảnh vườn là x (m) ( x > 0 | x ∈ N )
Thì chiều rộng của mảnh vườn là x - 10 (m)
Vì mảnh vườn có diện tích 1200m²
Ta có phương trình:
x(x-10)=1200
⇔ x² - 10x - 1200 = 0
⇔ x² + 30x - 40x - 1200 = 0
⇔ ( x - 40 )( x + 30 ) = 0
⇔[x−40=0x+30=0[x−40=0x+30=0
⇔[x=40(TMĐK)x=−30(KTMĐK)[x=40(TMĐK)x=−30(KTMĐK)
Vậy chiều dài của mảnh vườn là 40m
⇒ Chiều rộng của mảnh vườn là: 40 - 10 = 30 (m)
Gọi chiều rộng là x
Chiều dài là x+10
Theo đề, ta có: x(x+10)=1200
\(\Leftrightarrow x^2+10x-1200=0\)
\(\text{Δ}=10^2-4\cdot1\cdot\left(-1200\right)=4900>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-10-70}{2}=-40\left(loại\right)\\x_2=\dfrac{-10+70}{2}=30\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều rộng là 30m; Chiều dài là 40m