Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là chiều dài, b là chiều rộng mảnh vườn ( a, b >0 )
Diện tích mảnh vườn: S= a.b = 45
Theo đề bài nếu tăng rộng 2m giảm dài 2m thì mảnh vườn trở thành hình vuông
=> a - 2 = b + 2
<=> a = b + 4
Thay vào công thức tính diện tích ta được:
S = a.b = b(b+4) = 45
<=> b^2 + 4b - 45 = 0
<=> b^2 - 5b + 9b - 45 = 0
<=> (b - 5)(b + 9) = 0
<=> b = 5 hoặc b = -9
Vì b > 0 nên b = 5
Vậy a = b+4 = 5 + 4 = 9
Vậy chiều dài là 9m, rộng là 4m.
Xin lỗi em trình bày lượm thượm ạ
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề ta có:
\(\left\{{}\begin{matrix}a+b=\dfrac{64}{2}=32\\\left(a-2\right)\left(b+4\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=32\\ab+4a-2b-8=ab\end{matrix}\right.\)
=>a+b=32 và 4a-2b=8
=>a=12; b=20
Nửa chu vi HCN là: \(124:2=62\left(m\right)\)
Gọi chiều dài và chiều rộng HCN ban đầu lần lượt là a (m) và b (m) \(\left(0< a,b< 62\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=62\\\left(a+5\right)\left(b+3\right)-ab=225\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=62\\ab+3a+5b+15-ab=225\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=62\\3a+5b=210\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3a+3b=186\\3a+5b=210\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2b=210-186\\3a+3b=186\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b=12\\a+b=62\end{cases}\Rightarrow\hept{\begin{cases}b=12\\a=50\end{cases}}}\)(thỏa mãn)
KL: Chiều dài: 50m, chiều rộng: 12m
Cách lập phương trình:
Gọi x (m) là chiều dài của khu vườn ) \(\left(31< x< 62\right)\)
=> 62 - x (m) là chiều rộng của khu vườn
Diện tích khu vườn ban đầu là: \(x\left(62-x\right)\left(m^2\right)\)
Vì nếu tăng chiều dài lên 5m , chiều rộng lên 3m thì diện tích mảnh vườn tăng thêm \(255m^2\)
\(\Rightarrow\left(x+5\right)\left(65-x\right)=x\left(62-x\right)+255\)
\(\Leftrightarrow-x^2+60x+325=-x^2+62x+255\)
\(\Leftrightarrow2x=70\Rightarrow x=35\left(tm\right)\)
=> Chiều dài khu vườn ban đầu là 35m
=> Chiều rộng khu vườn ban đầu là 62 - 35 = 27m
Vậy chiều dài , chiều rộng ban đầu của mảnh vườn lần lượt là 35m , 27m
Gọi chiều dài mảnh vườn ban đầu là x(m, 0<x<62)
chiều rộng mảnh vườn ban đàu là y(m, 0<y<62,y<x)
⇒ Ta có hệ phương trình: x+y=62 ⇔ x=35
(x+5)(y+3)-xy=255 y=27
Vậy chiều dài mảnh vườn ban đầu là 35m
chiều rộng mảnh vườn ban đầu là 27m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: ab=300 và (a+10)(b-5)=ab
=>ab=300 và -5a+10b=50
=>ab=300 và -a+2b=10
=>-a=10-2b
=>a=2b-10
ab=300
=>b(2b-10)=300
=>2b^2-10b-300=0
=>b=15
=>a=20
Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)