K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều dài và chiều rộng lần lượt là \(x,y\left(50>x>y\right)\)\(\left(m\right)\)

Tổng chiều dài và rộng là \(x+y=\dfrac{100}{2}=50m\left(1\right)\)

Diện tích ban đầu: \(S=x\cdot y\left(m^2\right)\)

Nếu giảm dài 3m và tăng rộng 4m thì S mới tăng \(48m^2\)

\(\Rightarrow\left(x-3\right)\cdot\left(y+4\right)=x\cdot y+48\)

\(\Rightarrow4x-3y=60\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)

\(S_{bđ}=30\cdot20=600m^2\)

7 tháng 2 2022

Gọi chiều dài chiều rộng lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ 

\(\left\{{}\begin{matrix}2\left(a+b\right)=100\\\left(b+4\right)\left(a-3\right)=ab+48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=50\\-3b+4a=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)(tm)

Diện tích ban đầu là ab = 600 m2

20 tháng 2 2019

Này cậu :)))))

Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m ) 

( 40 < x < 80 ; 0 < y < 40 )

Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )

Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\)  ( 2 )

Từ ( 1 ) và ( 2 ) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )

Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P

2 tháng 2 2021

Gọi \(x\left(m\right)\) là chiều dài ban đầu của mảnh đất \(\left(x>6\right)\)

       \(y\left(m\right)\) là chiều rộng ban đầu của mảnh đất \(\left(y>0\right)\)

Vì chu vi mảnh vườn là 48m nên:

\(\left(x+y\right).2=48\\ \Leftrightarrow x+y=24\left(1\right)\)

Vì nếu tăng chiều rộng 4m và giảm chiều dài 6m thì diện tích tăng 12 mét vuông nên:

\(\left(x-6\right)\left(y+4\right)=xy+12\\ \Leftrightarrow xy+4x-6y-24=xy+12\\ \Leftrightarrow4x-6y=36\left(2\right)\)

Từ (1) và (2) ta có hpt \(\left\{{}\begin{matrix}x+y=24\\4x-6y=36\end{matrix}\right.\)

Giải hpt ta được \(\left\{{}\begin{matrix}x=18\\y=6\end{matrix}\right.\) (nhận)

Vậy chiều dài ban đầu là 18m chiều rộng ban đầu là 6m

2 tháng 2 2021

Gọi chiều dài và chiều rộng mảnh đất lần lượt là: x và y (x>y; x,y <24)

Vì chu vi mảnh đất là 48m nên ta có PT: x+y =24 (1)

Nếu tăng chiều rộng 4m, giảm chiều dài 6m thì diên tích tăng 12m2 nên ta có PT:

(x-6)(y+4)-xy=12

⇔xy+4x-6y-24-xy=12

⇔4x-6y=36 (2)

Từ (1) và (2) ⇒HPT: \(\left\{{}\begin{matrix}x+y=24\\4x-6y=36\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=18\\y=6\end{matrix}\right.\)(TM)

Vậy chiều dài và chiều rộng mảnh đất lần lượt là 18m và 6m

Bài 11: 

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 90m nên ta có phương trình:

\(2\cdot\left(x+y\right)=90\)

\(\Leftrightarrow x+y=45\)(1)

Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)

Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:

\(\left(x-5\right)\left(y-2\right)=xy-140\)

\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)

\(\Leftrightarrow-2x-5y+150=0\)

\(\Leftrightarrow-2x-5y=-150\)

\(\Leftrightarrow2x+5y=150\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)

Diện tích mảnh đất là:

\(x\cdot y=25\cdot20=500\left(m^2\right)\)

Vậy: Diện tích mảnh đất là 500m2

Bài 12:

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 80m nên ta có phương trình:

\(2\cdot\left(x+y\right)=80\)

\(\Leftrightarrow x+y=40\)(3)

Diện tích ban đầu của mảnh đất là:

\(xy\left(m^2\right)\)

Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:

\(\left(x+3\right)\left(y+5\right)=xy+195\)

\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)

\(\Leftrightarrow5x+3y-180=0\)

\(\Leftrightarrow5x+3y=180\)(4)

Từ (3) và (4) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh đất là 30m

Chiều rộng của mảnh đất là 10m

9 tháng 5 2022

a) Đặt chiều dài là a, chiều rộng là b ta có:

2(a+b) = 24 => a+b =12 (1)

Diện tích của mảnh đất là S= a.b

Tăng chiều dài 2m, giảm chiều rộng 1m diện tích sẽ là :

(a+2)(b-1) = a.b -a + 2b - 2 

= S -a + 2b - 2= S+1

=>2b - a  - 3 =0 => a = 2b -3 (2)

Thế (2) vào (1) ta có: 2b - 3 + b  = 12 => 3b = 15 => b = 5, a = 12-5 = 7

Vậy chiều dài là 7m, chiều rộng là 5m

b) Tính detal = b^2 - 4ac = 4(m-1)^2 - 4(m-3)

detal = 4(m^2-2m+1) - 4m +12

= 4m^2 -12m +16

= 4(m^2-3m+4)
=4(m^2 -2.m.3/2 + 9/4 + 7/4)
=4(m-3/2)^2 + 7 >0 với mọi m

Do đó luôn có 2 nghiệm

2:

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có:

a+b=50 và (a-4)(b+3)=ab-2

=>a+b=50 và 3a-4b=10

=>a=30 và b=20

S=30*20=600m2

20 tháng 2 2019

Gọi CD là a ,CR là b(a,b>0)

a+b=70(1)

(a-24)(b+3)=ab+72   hay   ab+3a-24b-72=72 

3a-24b=144(2)

từ (1), (2) ta tìm đc CD :608/9

                             CR : 22/9

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)

Diện tích ban đầu la 20x40=800(m2)

29 tháng 1 2022

cho mình hỏi ở phương trình 2 lúc đầu là b + 5 + 3/4a = 55 sau lúc sau lại mất đi số 5 v ạ ? vế bên vẫn ko nhận đc j 

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

Gọi chiều dài và chiều rộng ban đầu của mảnh đất lần lượt là $a$ và $b$ (m)

Theo bài ra ta có: 

\(\left\{\begin{matrix} ab=630\\ a-5=b+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab=630\\ a=b+9\end{matrix}\right.\) 

$\Rightarrow b(b+9)=630$

$\Leftrightarrow b^2+9b-630=0$

$(b-21)(b+30)=0$

Vì $b>0$ nên $b=21$ (m)

$a=b+9=30$ (m)