Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: Một gen có hiệu số phần trăm giữa nu loại G với nu loại khác là 20%
\(\Rightarrow\%G-\%A=20\%\)(1)
Theo nguyên tắc bổ xung: \(\%A+\%G=50\%\)(2)
Từ (1) và (2) suy ra hệ phương trình:\(\left\{{}\begin{matrix}\%G-\%A=20\%\\\%A+\%G=50\%\end{matrix}\right.\)
Giải hệ phương trình trên, ta được %G= 35%; %A= 15%
Gọi N là số nuclêôtit của gen(\(N\in Z^+\))
Ta có: 4050 liên kết Hiđro.
\(\Rightarrow2.15\%N+3.35\%N=4050\)
Giải phương trình trên, ta được N= 3000(nuclêôtit)
Chiều dài của gen là:
3000: 20 . 34 = 5100 (A0)
b) Số nuclêôtit của các gen con sau khi gen nhân đôi là:
3000.23 = 24000(nuclêôtit)
tổng số nu cần cung cấp cho phiên mã là:
\(\dfrac{24000}{2}.2=24000\)(nuclêôtit)
a) Giả sử mạch 1 là mạch khuôn
Theo đề ra : X1 - T1 = 125 / G1 - A1 = 175
=> (G1 - A1) + (X1 - T1) = 175 + 125
⇔ (G1 + X1) - ( A1 + T1 ) = 300
⇔ G - A = 300 (1)
Lại có : Gen có 2025 lk Hidro => 2A + 3G = 2025 (2)
Từ (1) và (2) có hệ \(\left\{{}\begin{matrix}2A+3G=2025\\-A+G=300\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A=T=225nu\\G=X=525nu\end{matrix}\right.\)
b) Tổng nu của gen : \(N=2A+2G=1500nu\)
Chiều dài : \(L=\dfrac{N}{2}.3,4=2550A^o\)
Chu kì xoắn : \(C=\dfrac{N}{20}=75\left(chukì\right)\)
c) Mt cung cấp 15U => A1 = 15nu
Có :
A1 = T2 = rU = 15nu
T1 = A2 = rA = A - A1 = 210nu
* Ta có : (G1 - A1) - (X1 - T1) = 175 - 125
=> G1 - X1 - (A1 - T1)= 50
Thay A1, T1 vào => G1 - X1 + 195 = 50 => G1 - X1 = 245
Mặt khác G1 + X1 = 525 => Hệ pt \(\left\{{}\begin{matrix}G1+X1=525\\G1-X1=245\end{matrix}\right.=>\left\{{}\begin{matrix}G1=385nu\\X1=140nu\end{matrix}\right.\)
Vậy, theo NTBS :
A1 = rU = 15nu
T1 = rA = 210nu
G1 = rX = 385nu
X1 = rG = 140nu
a, TỈ lệ % nu của gen :
rA% = T1% = \(\dfrac{1}{1+2+3+4}=\dfrac{1}{10}=10\%\)
rU% = A1% = \(\dfrac{2}{10}=20\%\)
rG% = X1% = \(\dfrac{3}{10}=30\%\)
rX% = G1% = \(\dfrac{4}{10}=40\%\)
b, Số lượng nu mỗi loại gen , kkhi A = 150 nu
rA = T1 = 150 ( nu )
rU = A1 = 2.150 = 300 ( nu )
rG = X1 = 3.150 = 450 ( nu )
rX = G1 = 4.150 = 600 ( nu )
c, Số lượng từng loại nu môi trường cung cấp là :
rA = 150 . ( 2^5 - 1 ) = 4650 ( nu )
rU = 300 . ( 2^5 - 1) = 9300 ( nu )
rG = 450 . (2^5 - 1 ) = 13 950 ( nu )
rX = 600 . ( 2^5 - 1) = 18 600 ( nu )
Số liên kết hóa trị hình thành :
( N - 2 ).( 2^5 - 1 )
= ( 150 + 300 + 450 + 600 - 2 ) . 31
= 46 438 ( liên kết )
\(a,L=3,4.\dfrac{N}{2}\rightarrow N=3000\left(nu\right)\)
Theo bài ta có : \(\left\{{}\begin{matrix}A_1=T_2=300\left(nu\right)\\T_1=A_2=450\left(nu\right)\\G_2=X_1=450\left(nu\right)\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}A=T=A_1+A_2=750\left(nu\right)\\G=X=\dfrac{3000}{2}-750=750\left(nu\right)\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}X_2=X-X_1=300\left(nu\right)\\G_1=G-G_2=300\left(nu\right)\end{matrix}\right.\)
\(b,\)\(\left\{{}\begin{matrix}rA=T_1=450\left(nu\right)\\rU=A_1=300\left(nu\right)\\rG=X_1=450\left(nu\right)\\rX=G_1=300\left(nu\right)\end{matrix}\right.\)
Tham khảo
\(1,\) Giả sử mạch \(1 \) là mạch mã gốc.
- Thì ta có : \(A=A_1+A_2=A_1+T_1=mU+mA\)
\(\rightarrow A=mU+mA=900\left(nu\right)\)
\(-Gen\) đứt \(3600\) liên kết \(hidro\) \(\rightarrow H=3600\left(lk\right)\)
\(\rightarrow\left\{{}\begin{matrix}2A+3G=3600\\G=600\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}A=T=900\left(nu\right)\\G=X=600\left(nu\right)\end{matrix}\right.\)
\(\rightarrow N=2A+2G=3000\left(nu\right)\)
\(L=3,4.\dfrac{3000}{2}=5100\left(\overset{O}{A}\right)\)
\(2,\)Ta có \(0< G_1< 600\) \(,G_1\in N\)
- Gọi \(k1\) là số lần phiên mã lúc đầu (\(k1\le5,k1\in N\))
- Ta có số \(rNu\) loại \(G\) môi trường cung cấp cho \(gen\) phiên mã \(k1\) lần được tính theo công thức
\(mG_{mt}=k1.X_1=465\)
\(\rightarrow\left\{{}\begin{matrix}k1=1\rightarrow X_1=465\left(nu\right)\\k1=2\rightarrow X_1=232,5\left(nu\right)\left(\text{loại}\right)\\k1=3\rightarrow X_1=155\left(nu\right)\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}k1=4\rightarrow X_1=116,25\left(nu\right)\left(\text{loại}\right)\\k1=5\rightarrow X_1=93\left(nu\right)\end{matrix}\right.\)
- Có tới ba giá trị \(X_1\) nên ta phải loại trừ hai giá trị ko hợp lý. Gọi số lần phiên mã lúc sau là \(k2\left(k2\in N\right)\)
- Tương tự ta cũng có :
\(mG_{mt}=k2.X_1=775\)
\(\rightarrow\left\{{}\begin{matrix}X_1=456\left(nu\right)\rightarrow k2=1,67\left(\text{loại}\right)\\X_1=155\left(nu\right)\rightarrow k2=5\left(tm\right)\\X_1=93\left(nu\right)\rightarrow k2=8,3\left(\text{loại}\right)\end{matrix}\right.\)
\(\rightarrow X_1=155\left(nu\right)\Rightarrow k1=3,k2=5\)
Lại có : \(G_1=600-155=455\left(nu\right)\)
\(\rightarrow\left\{{}\begin{matrix}U_m=375\left(nu\right)\\A_m=525\left(nu\right)\\X_m=445\left(nu\right)\\G_m=155\left(nu\right)\end{matrix}\right.\)
a, Ta có
L= 5100 A
=> N = 5100 x 2 / 3,4 = 3000 nu
=> A = 3000 / 5 = 600 nu = T
Theo NTBS:
A+G = 50% N
=> 600 + G = 1500
=> G =1500 - 600 = 900 nu = X
b, Số nu mỗi loại của ARN là
mA= 120 nu
mU= 600 - 120 = 480 nu
mX= 240 nu
mG= 900 - 240 = 660 nu
c,
Gen tự sao mã 2 lần tạo ra \(2^2\)= 4 gen con
Số nu từng loại cần cung cấp là;
Amtcc = 4 x 3 x 5 x 120 = 7200 nu
Umtcc = 4 x 3 x 5 x 480 = 28800 nu
Xmtcc = 4 x 3 x 5 x 240 = 14400 nu
Gmtcc = 4 x 3 x 5 x 660 = 39600