K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2021

Gọi I là tâm bàn cờ

Khi đó I là trung điểm các đoạn \(A_1A_{32};A_2A_{31}...B_1B_{32};B_2B_{31}...\)

Đồng thời các tứ giác \(A_1B_4A_{32}B_{29};B_1A_4B_{32}A_{29}...\) là các hình chữ nhật nên ta có:

\(IA_1=IB_4;IA_{32}=IB_{29}...\) (1)

Do đó:

\(VT=MA_1^2+MA_2^2+...+MA_{32}^2\)

\(=\left(\overrightarrow{MI}+\overrightarrow{IA_1}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IA_2}\right)^2+...+\left(\overrightarrow{MI}+\overrightarrow{IA_{32}}\right)^2\)

\(=32MI^2+IA_1^2+...+IA_{32}^2+2\left(\overrightarrow{IA_1}+\overrightarrow{IA_{32}}\right)+2\left(\overrightarrow{IA_2}+\overrightarrow{IA_{31}}\right)+...\)

\(=32MI^2+IA_1^2+...+IA_{32}^2\)

Tương tự:

\(VP=32MI^2+IB_1^2+...+IB_{32}^2=VT\) theo (1)

NV
5 tháng 10 2021

undefined

27 tháng 8 2018

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇒ ΔMHS đều.

MD ⊥ SH nên MD là đường cao đồng thời là trung tuyến của ΔMHS.

⇒ D là trung điểm của HS

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Chứng minh tương tự ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì các tứ giác BSMP, HMQC, MRAG là hình bình hành)

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \left( {\overrightarrow {MO}  + \overrightarrow {OD} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OE} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OF} } \right)\)

Qua M kẻ các đường thẳng \({M_1}{M_2}//AB;{M_3}{M_4}//AC;{M_5}{M_6}//BC\)

Từ đó ta có: \(\widehat {M{M_1}{M_6}} = \widehat {M{M_6}{M_1}} = \widehat {M{M_4}{M_2}} = \widehat {M{M_2}{M_4}} = \widehat {M{M_3}{M_5}} = \widehat {M{M_5}{M_3}} = 60^\circ \)

Suy ra các tam giác \(\Delta M{M_3}{M_5},\Delta M{M_1}{M_6},\Delta M{M_2}{M_4}\) đều

Áp dụng tính chất trung tuyến \(\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)(với M là trung điểm của BC) ta có:

\(\overrightarrow {ME}  = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right);\overrightarrow {MD}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right);\overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( \Rightarrow \overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

Ta có: các tứ giác \(A{M_3}M{M_1};C{M_4}M{M_6};B{M_2}M{M_5}\) là hình bình hành

Áp dụng quy tắc hình bình hành ta có

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_3}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_5}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_4}}  + \overrightarrow {M{M_6}} } \right)\)

\( = \frac{1}{2}\overrightarrow {MA}  + \frac{1}{2}\overrightarrow {MB}  + \frac{1}{2}\overrightarrow {MC}  = \frac{1}{2}\left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)\)

\( = \frac{1}{2}\left( {\left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OC} } \right)} \right)\)

\( = \frac{1}{2}\left( {3\overrightarrow {MO}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)} \right) = \frac{3}{2}\overrightarrow {MO} \) (đpcm)

Vậy \(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{3}{2}\overrightarrow {MO} \)

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến lược thắng hay không?...
Đọc tiếp

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến lược thắng hay không? Nếu có, hãy mô tả và giải thích chiến lược đó.

                                                                                  

 2. Cho bàn cờ kích thước \(n\times n\). Hỏi 1 quân mã xuất phát từ 1 ô góc của bàn cờ đến góc đối diện thì cần ít nhất bao nhiêu nước đi? (Biết rằng quân mã đi như mã trong cờ vua)

                                                                               

 3. Tìm số quân tượng lớn nhất có thể đặt vào bàn cờ vua 8x8 sao cho không quân tượng nào tấn công quá 3 quân tượng khác (tượng tấn công như trong cờ vua, đi chéo vô hạn và không tấn công xuyên thấu, quan hệ tấn công là 2 chiều)

                                                                             

 4. Có bao nhiêu cách đặt 8 quân xe lên bàn cờ sao cho không có 2 quân xe nào ăn nhau và không có quân xe nào ở vị trí cấm được đánh dấu là vòng tròn màu xanh lục như hình vẽ: 

                                                                                  

 

11
18 tháng 8 2023

Em là thần đồng cờ vua nhưng bài này thì chịu

18 tháng 8 2023

?

 

10 tháng 8 2019

A B C O G I K L D E F M N P e

Gọi tiếp điểm của (I) với BC,CA,AB thứ tự là D,E,F. G là trọng tâm của \(\Delta\)DEF.

Kéo dài AI,BI,CI cắt (O) lần lượt tại M,N,P (A khác M, B khác N, C khác P)

Dễ dàng chứng minh M,N,P lần lượt là điểm chính giữa các cung BC,CA,AB của (O)

Từ đó OM,ON,OP lần lượt vuông góc với BC,CA,AB và I là trực tâm của \(\Delta\)MNP

Ta có \(\Delta\)MNP với tâm ngoại tiếp O và trực tâm I, suy ra \(\overrightarrow{OI}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\)

Chú ý rằng \(\overrightarrow{OM}=OM.\frac{\overrightarrow{ID}}{ID}=\frac{R}{r}\overrightarrow{ID}\). Từ đây \(\overrightarrow{OI}=\frac{R}{r}\left(\overrightarrow{ID}+\overrightarrow{IE}+\overrightarrow{IF}\right)\)

Lại có G là trọng tâm của \(\Delta\)DEF nên \(\overrightarrow{3IG}=\overrightarrow{ID}+\overrightarrow{IE}+\overrightarrow{IF}\)

Do đó \(\overrightarrow{OI}=\frac{3R}{r}\overrightarrow{IG}\), suy ra ba điểm O,I,G thẳng hàng        (1)

Mặt khác, khi ta dựng vector đơn vị \(\overrightarrow{e}\)vuông góc với KL là hướng ra ngoài tứ giác BKLC

Thì \(KL.\overrightarrow{e}+BK.\overrightarrow{IF}+CL.\overrightarrow{IE}+BC.\overrightarrow{ID}=\overrightarrow{0}\)(ĐL Con Nhím)

Suy ra \(KL.\overrightarrow{e}+3BC.\overrightarrow{IG}=\overrightarrow{0}\)hay \(\overrightarrow{GI}=\frac{KL}{3BC}.\overrightarrow{e}\). Do vậy \(\overrightarrow{GI}\)// \(\overrightarrow{e}\)

Mà \(\overrightarrow{e}\)vuông góc với KL nên GI vuông góc KL        (2)

Từ (1) và (2) suy ra OI cũng vuông góc với KL (đpcm).

 Chess960 (còn gọi là Fischer Random Chess) là một biến thể của cờ vua rất thú vị và được nhiều kì thủ ưa chuộng. Nó còn xuất hiện trong nhiều giải đấu lớn, đặc biệt là các giải đấu quốc tế. Chess960 được chơi trên bàn cờ tiêu chuẩn. Mỗi bên đều có 1 Vua, 1 Hậu, 2 Xe, 2 Tượng, 2 Mã và 8 Tốt. Cách xếp cờ của biến thể này như sau: Xếp 8 quân tốt ở hàng 2 (với quân trắng) và hàng 7 (với quân đen)....
Đọc tiếp

 Chess960 (còn gọi là Fischer Random Chess) là một biến thể của cờ vua rất thú vị và được nhiều kì thủ ưa chuộng. Nó còn xuất hiện trong nhiều giải đấu lớn, đặc biệt là các giải đấu quốc tế. Chess960 được chơi trên bàn cờ tiêu chuẩn. Mỗi bên đều có 1 Vua, 1 Hậu, 2 Xe, 2 Tượng, 2 Mã và 8 Tốt. Cách xếp cờ của biến thể này như sau: Xếp 8 quân tốt ở hàng 2 (với quân trắng) và hàng 7 (với quân đen). Sau đó xếp các quân cờ còn lại ở vị trí ngẫu nhiên trên hàng 1 (với quân trắng) và hàng 8 (với quân đen) nhưng vẫn phải đảm bảo các điều kiện sau thì một cách xếp cờ của chess960 mới được xem là hợp lệ:

1. Vua của mỗi bên phải nằm giữa hai quân xe của mình.

2. Hai quân tượng của một bên phải nằm ở hai ô khác màu.

3. Các quân cờ của cả hai bên phải đối xứng nhau qua trục là đường nằm giữa hàng 4 và hàng 5.

 Hỏi có tất cả bao nhiêu cách xếp cờ hợp lệ khi chơi chess960?

 

2
26 tháng 1 2023

960 cách như tên

26 tháng 1 2023

Cái mình cần là làm sao để tính ra được như vậy ấy.

1 tháng 10 2016

GIÚP MÌNH ĐI.........MÌNH ĐANG CẦN GẤPucche

31 tháng 7 2019

A B C M N O D / / // // /// /// Chứng minh:\(\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=4\overrightarrow{SO}\)

Ta có: \(\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{SO}+\overrightarrow{OA}+\overrightarrow{SO}+\overrightarrow{OB}+\overrightarrow{SO}+\overrightarrow{OC}+\overrightarrow{SO}+\overrightarrow{OD}\)\(=4\overrightarrow{SO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)\)

Mà: \(\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OM}\)\(\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{ON}\)

\(=4\overrightarrow{SO}+\left(2\overrightarrow{OM}+2\overrightarrow{ON}\right)\)

\(=4\overrightarrow{SO}+2\left(\overrightarrow{OM}+\overrightarrow{ON}\right)=4\overrightarrow{SO}+2.\overrightarrow{0}=4\overrightarrow{SO}\left(đpcm\right)\)