K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.

25 tháng 3 2018

a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)

chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)

b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)

ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)

=> góc ECA + góc HIB = 90o (1)

Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)

Từ (1) và (2) => góc ECA = góc EKI 

=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)

c,Ta có: góc EAB + góc EBA = 90và từ (3), (4) => góc EAB = góc BIH

mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)

=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)

Tương tự, ta có góc K + góc KAH = 90o

góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t)  => góc KEN = góc K   => tam giác KNE cân tại N => NK = NE (**)

từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)

20 tháng 1 2018
CÁC BẠN GIÚP MÌNH VỚI