K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)

chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)

b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)

ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)

=> góc ECA + góc HIB = 90o (1)

Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)

Từ (1) và (2) => góc ECA = góc EKI 

=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)

c,Ta có: góc EAB + góc EBA = 90và từ (3), (4) => góc EAB = góc BIH

mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)

=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)

Tương tự, ta có góc K + góc KAH = 90o

góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t)  => góc KEN = góc K   => tam giác KNE cân tại N => NK = NE (**)

từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)

20 tháng 1 2018
CÁC BẠN GIÚP MÌNH VỚI
18 tháng 2 2020

a, Xét đg tròn (O) có: AEB^ là góc nội tiếp chăn nửa đg tròn => AEBˆ=900

Xét ΔKIBΔKIB có: KE⊥BI tại E (AEB^=900)

BH⊥IK tại H (gt)

Mà KE cắt BH tại A => A là trực tâm của ΔKIB

=> IA⊥KB

b, Xét ΔKEIΔBHI có:

BHIˆ=KEIˆ(=900)

là góc chung

=> ΔKEI ~ ΔBHI(g.g)

=> NKEˆ=ABEˆ

Xét đg tròn (O) có: ABEˆ=ACEˆ (2 góc nội tiếp cùng chắn cung AE)

=> NKEˆ=ACEˆ

Xét tứ giác KCEN có: NKEˆ=ACEˆ(cmt)

=> KCEN là tgnt

c, Xét đg tròn (O), tiếp tuyến NE có: NEKˆ=ACEˆ(góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung AE)

ACEˆ=NKEˆ(cmt)

=> NEKˆ=NKEˆ

=> ΔNEK cân tại N => NE=NK

Xét ΔKEIvuông tại E (KEIˆ=900) có:

NKEˆ+NIEˆ=900

NEKˆ+NEIˆ=900

=> NIEˆ=NEIˆ

=> ΔNEI cân tại N => NE=NI

Mà NE=NK (cmt)

=> NI=NK. Mà N nằm giữa I và K

=> N là trung điểm của IK

4 tháng 5 2021

bạn giải thích cho mình phần c tsao NEK= ACE hộ vs

 

27 tháng 11 2017

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\) 

Cho nửa đường tròn tâm O đường kính BC và điểm A trên nửa đường tròn O (A khác B,C). Hạ AH vuông góc với BC (H thuộc BC). I,K lần lượt là đối xứng với H qua AB, AC.Đường thẳng IK va tia CA cắt tiếp tuyến kẻ từ B của O lần lượt tại M,N. GỌi E là giao điểm của IH và AB, F là giao điểm KH với ACa) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O)b) Chứng minh: 1/(BH^2) = 1/(AB^2) + 1/(AN)^2c) Chứng...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính BC và điểm A trên nửa đường tròn O (A khác B,C). Hạ AH vuông góc với BC (H thuộc BC). I,K lần lượt là đối xứng với H qua AB, AC.Đường thẳng IK va tia CA cắt tiếp tuyến kẻ từ B của O lần lượt tại M,N. GỌi E là giao điểm của IH và AB, F là giao điểm KH với AC
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O)
b) Chứng minh: 1/(BH^2) = 1/(AB^2) + 1/(AN)^2
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
e) Chứng minh: BE.CF.BC =  (AH)^3
f) Tiếp tuyến tại C của đường tròn ( O ) cắt IK tại P.Chứng minh: NO ⊥ PB
g) Chứng minh: AO ⊥EF
h) Q, R lần lượt là giao điểm của OM, OP với AB, AC. Xác định tâm và tính bán kính đường tròn ngoại tiếp tứ giác MP RQ biết ∠ACB = 30 độ.

0