Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)-\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\)
\(=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}\)
Câu 10 sai, đáp án B đúng, sử dụng đan dấu trên trục số dễ dàng thấy:
12. Câu này sai, A mới đúng. Đơn giản là em nhìn kĩ lại công thức lượng giác là thấy thôi, nhầm lẫn về hệ số trong công thức biến tích thành tổng
\(cosa.cosb=\dfrac{1}{2}....\)
14. Đáp án C đúng
\(\overrightarrow{BA}=\left(2;2\right)=2\left(1;1\right)\) nên trung trực AB nhận (1;1) là 1 vtpt
Gọi M là trung điểm AB \(\Rightarrow M\left(0;2\right)\)
Phương trình: \(1\left(x-0\right)+1\left(y-2\right)=0\Leftrightarrow x+y-2=0\)
Δ vuông góc d3
=>Δ: x+2y+c=0
Tọa độ giao của(d1) và (d2) là;
x+3y=1 và x-3y=5
=>x=3 và y=-2/3
Thay x=3 và y=-2/3 vào Δ, ta được:
c+3-4/3=0
=>c=-5/3
a: \(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(1;-4\right)\)
Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên A,B,C ko thẳng hàng
hay A,B,C lập thành 1 tam giác
b: Gọi M là trung điểm của BC
\(\Leftrightarrow\left\{{}\begin{matrix}x_M=\dfrac{2-\left(-2\right)}{2}=2\\y_M=\dfrac{-1-1}{2}=-1\end{matrix}\right.\)
Vậy: M(2;-1)
A(1;3)
\(AM=\sqrt{\left(2-1\right)^2+\left(-1-3\right)^2}=\sqrt{17}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=AC=\sqrt{BC^2-AB^2}=4\)
Ý B
Chọn B