K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét (O) có 

EM là tiếp tuyến

EN là tiếp tuyến

Do đó: EM=EN

hay E nằm trên đường trung trực của MN(1)

Ta có: OM=ON

nên O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OE là đường trung trực của MN

10 tháng 11 2021

Bài 3:

\(a,ĐK:2\le x\le1+\sqrt{5}\\ PT\Leftrightarrow4+2x-x^2=x^2-4x+4\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=3\\ b,ĐK:1\le x\le5\\ PT\Leftrightarrow25-x^2=x^2-2x+1\\ \Leftrightarrow2x^2-2x-24=0\\ \Leftrightarrow\left(x+3\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,PT\Leftrightarrow3x^2-9x+1=x^2-4x+4\\ \Leftrightarrow2x^2-5x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=3\)

10 tháng 11 2021

Gì vậy? Bài đâu?

20 tháng 10 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-x-2}-\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x^2-x-2}=\sqrt{x-2}\\ \Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

20 tháng 10 2021

\(a,ĐK:x\ge2\\ PT\Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\\ b,ĐK:\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-1}=x^2-1\\ \Leftrightarrow x^2-1=\left(x^2-1\right)^2\\ \Leftrightarrow\left(x^2-1\right)\left(x^2-1-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\\x=\sqrt{2}\left(tm\right)\\x=-\sqrt{2}\left(tm\right)\end{matrix}\right.\)

\(c,ĐK:\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-x}=-\sqrt{x^2+x-2}\\ \Leftrightarrow x^2-x=x^2+x-2\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\left(tm\right)\)

3 tháng 4 2021

undefined

a) Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

\(\widehat{CAD}\) là góc nội tiếp chắn \(\stackrel\frown{CD}\)

mà \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

nên \(\stackrel\frown{BD}=\stackrel\frown{CD}\)

hay BD=CD

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BD=CD(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD\(\perp\)BC(đpcm)

NV
28 tháng 7 2021

\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)

\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)

\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)

\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)

\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{5-9-2\left(5-7\right)}{2}\)

\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)

\(=0\)

 

18 tháng 12 2021

a: Xét tứ giác EOBM có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: EOBM là tứ giác nội tiếp

a: góc AQE=góc AKE=90 độ

=>AQKE nội tiếp

=>góc KQE=góc KAE=góc BCE
b: góc EAC=góc EBC

góc EBC=góc DKE

=>góc EBC=góc DKE

=>góc EAN=góc EKN

=>AKEN nội tiếp

=>góc ANE+góc AKE=180 độ

=>góc ANE=90 độ

DNCE có góc ENC=góc EDC=90 độ

nên DNEC nội tiếp

+>góc E1=góc C1

mà góc C1=góc A1=góc E2

nên góc E1=góc E2

=>ΔQKE đồng dạng với ΔDNE

=>EN*QK=ND*EQ