Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(\frac{a}{5}=\left(a+24\right):7x5\)
\(\Leftrightarrow\frac{a}{5}=\left(a+24\right):35\)
Quy đồng ta có : \(\frac{7a}{5}=\frac{a+24}{35}\)
\(\Rightarrow7a=a+24\Rightarrow6a=24\Rightarrow a=4\)
\(\Rightarrow\) Phân số phải tìm là : \(\frac{4}{5}\)
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d . Theo bài a+b+c+d=11 (1)
Cho a+c−b−d: 11=k (k E Z) (2)
a;b;c;d ≤ 9 => k E {0;1;-1}. Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí !
TH1: k=0 => a+c-(b+d)=11.k. (3)
Công (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 . Lấy (1) trừ đi (3)
2.(b+d)=11.(1-k) => b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
=> có 8 số có 4 chữ số chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.
Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow4n+8-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{\pm1;\pm2\right\}\)
Vì 2n + 3 là số lẻ ; 4n + 8 là số chẵn
=> ƯCLN(2n + 3 ; 4n + 8) \(\ne\)\(\pm\)2
=> ƯCLN(2n + 3 ; 4n + 8) \(=\pm1\)
=> \(\frac{2n+3}{4n+8}\)là phân số tối giản
+)Gọi d là số nguyên tố là ƯCLN(2n+3,4n+8)
+)2n+3\(⋮\)d;4n+8\(⋮\)d
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(1)
+)4n+8\(⋮\)d
+)Từ (1) và (2)
=>(4n+8)-(4n+6)\(⋮\)d
=>4n+8-4n-6\(⋮\)d
=>2\(⋮\)d
=>d\(\in\)Ư(2)={1;2}
Vì 2n+3\(⋮̸\)2
=>ƯCLN(2n+3,4n+8)=1
Vậy \(\frac{2n+3}{4n+8}\)tối giản với mọi n
Chúc bn học tốt.Có j ko hiểu hỏi mk nha
Số tự nhiên khi bạn học sinh quên dấu phẩy của số thập phân là:
\(10925-2010=8915\)
Vì khi bỏ dấu phẩy số thập phân đó tăng lên \(100\)lần nên số thập phân đó có hai chữ số ở hàng thập phân.
Số thập phân đó là: \(89,15\).
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
1,5 = 3/2
-1,6 = -8/5
3,8 = 19/5