K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

x/2-2/y=1/2

     -2/y=1/2-x/2

     -2/y=1-x/2

=>y.(1-x)=-2.2

    y.(1-x)= -4

=>y và 1-x thuộc Ư(-4)=(1;-1;2;-2;4;-4)

Ta có bảng tương ứng:

1-x =1 thì x=0;y=-4

1-x=-1 (loại)

1-x=2 thì x=-1;y=2

1-x=-2 thì x=3;y=-2

1-x=4 thì x=-3;y=1

1-x=-4 thì x=5;y=-1

Vậy (x;y)=(0;4);(-1;2);(3;-2);(-3;1);(5;-1)

Chúc bạn học tốt!

2 tháng 4 2021

ảm ơn bạn nhahaha

22 tháng 3 2023

\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)

mà `y in ZZ;x in ZZ`

`=>y in ZZ;2x-3 in ZZ`

`=>y;2x-3` thuộc ước nguyên của `12`

`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`

Ta có bảng sau :

`y``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`2x-3``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`x``1``1/2``0``-1/2``-3/2``-9/2``2``5/2``3``7/2``9/2``15/2`

Vì `x;y in ZZ`

nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`

20 tháng 2 2021

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)

\(b.\)

\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)

\(c.\)

\(\dfrac{x}{4}=\dfrac{y}{5}\)

\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=35

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(10;25)

b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

mà y-3x=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(1;5)

c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)

nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)

mà 2x-y=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(20;25)

1 tháng 2 2017

bn ơi thi vio vòng mấy đấy để mk tra cho

6 tháng 8 2017

mình ko nhớ

mà thôi, ko cần nữa đâu

9 tháng 4 2023

\(x.\left(y-1\right)+y=2\)

\(x.\left(y-1\right)+\left(y-1\right)=2-1\)

\(\left(y-1\right)\left(x-1\right)=1\)

(y-1) ; (x-1) có 2 cặp: \(y-1=1;x-1=1\)  hoặc \(y-1=-1;x-1=-1\)

\(x;y\) có  2 cặp: \(y=2;x=2\) hoặc \(y=0;x=0\)

9 tháng 4 2023

\(x\cdot\left(y-1\right)+y=2\\ xy-x+y=2\\ y\cdot\left(x+1\right)-x-1=2-1\\ y\cdot\left(x+1\right)-\left(x+1\right)=1\\ \left(x+1\right)\left(y-1\right)=1\)

mà `x;y in ZZ => x+1;y-1 in ZZ`

nên `x+1;y-1` thuộc ước nguyên của `1`

`=>x+1;y-1 in {1;-1}`

`=>x in {0;-2}; y in {2;0}`

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$

$\frac{6+xy}{3x}=\frac{1}{6}$

$\frac{2(6+xy)}{6x}=\frac{x}{6x}$

$\Rightarrow 2(6+xy)=x$

$\Rightarrow 12+2xy-x=0$

$12=x-2xy$

$12=x(1-2y)$

$\Rightarrow 1-2y$ là ước của $12$

Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$

$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$

$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)

11 tháng 5 2023

\(\dfrac{x}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{y+3}\)  Đk (\(y\ne-3\))⇒ \(\dfrac{2x+3}{6}\) = \(\dfrac{1}{y+3}\) ⇒ (2\(x\)+3)(y+3) = 6

Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}

Lập bảng ta có:

2\(x\) +3  -6 -3 -2 -1 1 2 3 6
\(x\) -9/2 -3 -5/2 -2 -1 -1/2 0 \(\dfrac{3}{2}\)
y+3 -1 -2 -3 -6 6 3 2 1
y -4 -5 -6 -9 3 0 -1 -2

 

Từ bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:

(\(x\), y) = ( -3; -5); ( -2; -9); ( -1; 3); (0; -1); 

 

 

 

15 tháng 3 2022

\(\left(x-1\right)^2+5y^2=6\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\pm1\\y=\pm1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0;y=\pm1\\x=2;y=\pm1\end{cases}}\)

5 tháng 1 2017

sai quá nhiều rồi sai thêm câu nữa xem nào?

y phải lẻ:

y=+-1=> x=+-5

y=+-3=>x=+-2

y=+-5 hết