K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn

I don't now

mik ko biết 

sorry 

......................

26 tháng 7 2018

1.  \(2ab\le\frac{\left(a+b\right)^2}{2}\le a^2+b^2\) (  \(\forall a;b\))

2.  \(\frac{a}{b}+\frac{b}{a}\ge2\)\(\forall a;b>0\))

3.  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\left(a;b>0\right)\)

4.  \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) \(\left(a;b>0\right)\)

5.  \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

6.  \(a^2+b^2+c^2\ge ab+bc+ca\)

7.  \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

8.  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) \(\left(a;b;c>0\right)\)

9.  \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)\(\left(x;y>0\right)\)

10.  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) \(\left(x;y;z>0\right)\)

4 tháng 3 2019

Hai bđt đó là một đấy bạn.

Ngoài ra còn có tên là BĐT Cauchy dạng Engel nữa mà mình ko biết Engel là gì cả?:)

NV
4 tháng 3 2019

Chữ Svac-xơ được phiên âm từ chữ Schwarz ra mà bạn

Engel là lấy theo tên nhà toán học Đức Arthur Engel thì phải

13 tháng 2 2022

TL:

Chỗ tôi được phép sử dụng luôn ko cần chứng minh

HT

13 tháng 2 2022

????

cho 1 vé báo cáo free nhé

Cách này được chứng minh thoải mái nha bạn

Bạn chỉ cần vào cái ô đầu tiên trên thanh công cụ trên trang này là ghi được dấu căn rồi

26 tháng 7 2016

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)

<=>\(a+b-2\sqrt{ab}\ge0\)

<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

=>dpcm

9 tháng 8 2019

<=>  \(a+b\ge2\sqrt{ab}\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=. \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng )

dấu = khi a=b

18 tháng 2 2022

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)