K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CB\(\perp\)CA tại C

=>CB\(\perp\)AF tại C

Xét tứ giác BHCF có \(\widehat{BHF}=\widehat{BCF}=90^0\)

nên BHCF là tứ giác nội tiếp

=>B,H,C,F cùng thuộc một đường tròn

loading...

15 tháng 10 2021

Xét ΔAMO vuông tại M có 

\(OA^2=AM^2+OM^2\)

\(\Leftrightarrow AM=12\left(cm\right)\)

hay AB=24(cm)

1 tháng 11 2021

\(11,\\ a,=4\cdot5+14:7=20+2=22\\ b,=3\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-4\sqrt{2}\\ c,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}=\dfrac{6}{7}\\ 12,\\ a,P=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ P=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ b,P=\dfrac{1}{2}\Leftrightarrow\sqrt{x}+3=4\Leftrightarrow x=1\left(tm\right)\)

a: \(=4\cdot5+14:7=20+2=22\)

b: \(=3\sqrt{2}-8\sqrt{2}+5\sqrt{2}=0\)

11 tháng 11 2023

loading...

a: Xét (O) có

ΔMAN nội tiếp

MN là đường kính

Do đó: ΔMAN vuông tại A

=>NA\(\perp\)IM

Xét (O) có

ΔNBM nội tiếp

NM là đường kính

Do đó: ΔNBM vuông tại B

=>MB\(\perp\)NI

b: Xét ΔIMN có

MB,NA là đường cao

MB cắt NA tại H

Do đó: H là trực tâm

=>IH\(\perp\)MN tại K

Xét tứ giác BHKN có

\(\widehat{HBN}+\widehat{HKN}=90^0+90^0=180^0\)

=>BHKN nội tiếp đường tròn đường kính HN

tâm F là trung điểm của HN

1.4:

a: CH=16^2/24=256/24=32/3

BC=24+32/3=104/3

AC=căn 32/3*104/3=16/3*căn 13

b: BC=12^2/6=24

AC=căn 24^2-12^2=12*căn 3

CH=24-6=18

12 tháng 10 2021

a: \(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}\)

a: góc AEB=góc AHB=90 độ

=>ABHE nôi tiếp

b: Gọi N là trung điểm của AB

=>AN=HN=EN=BN

MN là đường trung bình của ΔABC

=>MN//AC 

HE vuông góc AC

=>HE vuông góc MN

=>MN là trung trực của HE

=>ME=MH

 

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

\(\Leftrightarrow sđ\stackrel\frown{AB}=60^0\)