K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9:

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA
=>BA^2=BH*BC

b: BC=25cm; AB=căn 9*25=15cm; AC=căn 16*25=20cm

S ABC=1/2*15*20=150cm2

C ABC=25+15+20=60cm

e: \(=3x^6-x^3+4\)

31 tháng 10 2021

a: Xét ΔBAC có 

D là trung điểm của AB

M là trung điểm của AC

Do đó: DM là đường trung bình của ΔABC

Suy ra: DM//BC và \(DM=\dfrac{BC}{2}=3.5\left(cm\right)\)

12 tháng 3 2022

a, \(40x-20+45x-30=48x-36\Leftrightarrow37x=14\Leftrightarrow x=\dfrac{14}{37}\)

b, đk : x khác -3 ; 3 

\(5x+15+4x-12=x-5\Leftrightarrow8x=-38\Leftrightarrow x=-\dfrac{19}{4}\)(tm) 

c, \(\left[{}\begin{matrix}2x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

8 tháng 12 2023

câu a, \(\dfrac{x}{x+1}\)\(\dfrac{x^2}{1-x}\)\(\dfrac{1}{x^2-1}\)  (đk \(x\)≠ -1; 1)

          \(x^2\) - 1 = ( \(x\) - 1).(\(x\) + 1)

          \(\dfrac{x}{x+1}\) = \(\dfrac{x.\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\);

          \(\dfrac{x^2}{1-x}\) = \(\dfrac{-x^2}{x-1}\)\(\dfrac{-x^2.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) 

         \(\dfrac{1}{x^2-1}\)  =  \(\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

b, \(\dfrac{10}{x+2}\)\(\dfrac{5}{2x-4}\)\(\dfrac{1}{6-3x}\) (đk \(x\) ≠ -2; 2)

    2\(x-4\) = 2.(\(x\) - 2); 6 - 3\(x\) = - 3.(\(x\)  - 2)

   \(\dfrac{10}{x+2}\) = \(\dfrac{10.2.3\left(x-2\right)}{2.3\left(x+2\right)\left(x-2\right)}\) = \(\dfrac{60\left(x-2\right)}{6\left(x-2\right)\left(x+2\right)}\)

    \(\dfrac{5}{2x-4}\) = \(\dfrac{5.3\left(x+2\right)}{2.3\left(x-2\right).\left(x+2\right)}\) = \(\dfrac{15.\left(x+2\right)}{6.\left(x-2\right)\left(x+2\right)}\)

    \(\dfrac{1}{6-3x}\) = \(\dfrac{-1}{3.\left(x-2\right)}\) = \(\dfrac{-1.\left(x+2\right)}{3.2.\left(x-2\right)\left(x+2\right)}\) = \(\dfrac{-2.\left(x+2\right)}{6.\left(x-2\right).\left(x+2\right)}\)

   

         

 

8 tháng 12 2023

c, \(\dfrac{x}{2x-4}\)\(\dfrac{1}{2x+4}\) và \(\dfrac{3}{4-x^2}\)  đk \(x\) ≠ 2; -2

\(\dfrac{x}{2x-4}\)  =   \(\dfrac{x}{2.\left(x-2\right)}\) = \(\dfrac{x.\left(x+2\right)}{2.\left(x-2\right).\left(x+2\right)}\) 

  \(\dfrac{1}{2x+4}\) = \(\dfrac{1}{2.\left(x+2\right)}\) = \(\dfrac{\left(x-2\right)}{2.\left(x+2\right).\left(x-2\right)}\)

\(\dfrac{3}{4-x^2}\) = \(\dfrac{-3}{\left(x-2\right)\left(x+2\right)}\)  = \(\dfrac{-6}{2.\left(x-2\right)\left(x+2\right)}\)

 

30 tháng 10 2021

a, Vì D,M là trung điểm AB,AC nên DM là đtb tg ABC

Do đó \(DM=\dfrac{1}{2}BC=\dfrac{7}{2}\left(cm\right)\) và DM//BC

30 tháng 10 2021

anh ơi có hình ko ạ, em ko bt vẽ hình

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....

 

23 tháng 12 2021

g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

23 tháng 12 2021

\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

DD
8 tháng 5 2021

\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)

\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)

\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)

\(\Leftrightarrow x+2021=0\)

\(\Leftrightarrow x=-2021\)