Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là hai số lẻ
Nếu là số chẵn
Để lẻ lẻ
Nếu lẻ chẵn
Do đó chẵn (không thỏa mãn)
Với
Vì
Do và
Vậy:
1.A)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Lời giải:
\((x+1)f(x)=(x+4)f(x+8)\)
Thay $x=-1$ ta có: \(0.f(-1)=3f(7)\Leftrightarrow f(-7)=\frac{0.f(-1)}{3}=0\)
Thay $x=-4$ ta có: \(-3f(-4)=0.f(4)=0\Rightarrow f(-4)=0\)
Từ đây ta suy ra \(x=-4; x=-7\) là 2 nghiệm của đa thức $f(x)$. Chứng tỏ $f(x)$ có ít nhất 2 nghiệm (vì có thể có những nghiệm khác mà ta chưa chỉ ra) (đpcm)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Vì (2x-4). F(x) = (x-1).F(x+1) với mọi x nên
+) Khi x=2 thì 0.F(2) = 1.F(3) => F(3) = 0
Vậy x=3 là một nghiệm của F(x).
+) Khi x = 1 thì -2F(1) = 0.F(2) => F(1) = 0
Vậy x = 1 là một nghiệm của F(x)
Do đó F (x) có ít nhất hai nghiệm là 3 và 1.
~ Chúc b học tốt nhaa~