Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
cho đa thức f (x) thỏa mãn điều kiện x.f(x+1) = (x+2).f(x) .Chứng minh rằng f(x) có ít nhất 2 nghiệm
x.f(x+1) = (x+2).f(x)
Thay x= 0
Ta có :0.f(0+1) = (0+2).f(0)
=>0 = 2.f(0)
=>f(0)=0
Do đó 0 là một nghiệm của đa thức f(x) (1)
Thay x=-2
Ta có: (-2).f(-2+1)=(-2+2).f(-2)
=>(-2).f(-1) = 0 .f(-2)
=>(-2).f(-1)=0
=>f(-1)=0
Do đó -1 là một nghiệm của đa thức f(x) (2)
Vậy từ (1) và (2) =>Đa thức f(x) có ít nhất 2 nghiệm là 0 và -1 (đpcm)
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)