Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
k mk nha
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)
Ta có:
\(F\left(1\right)=\left(1-1+1\right)^{1994}+\left(1+1-1\right)^{1994}-2=0\)
\(\Rightarrow\)x=1 là 1 nghiệm của phương trình F(x)=0=> F(x) chia hết cho x-1
Đa thức chia có bậc 2 nên đa thức dư có bậc không vượt quá 1.
Gọi đa thức dư là : x + a, có :
\(F\left(x\right)=\left(x^2-1\right)Q\left(x\right)+x+a\)
F(x) chia hết cho x-1=> F(1)=0<=>a+1=0<=>a=-1