Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta A'B'O'\sim\Delta ABO\Rightarrow\dfrac{A'B'}{AB}=\dfrac{O'A'}{OA}\left(1\right)\)
\(\Delta FA'B'\sim\Delta FOI\Rightarrow\dfrac{FA'}{OF}=\dfrac{A'B'}{OI}\left(2\right)\)
Và OI=AB, Từ (1) và (2) \(\Rightarrow\dfrac{OA'}{OA}=\dfrac{FA'}{OF}\left(3\right)\)
Mà FA'=OF-OA'
Hay \(\dfrac{OA'}{OA}=\dfrac{OF-OA'}{OF}\) thay số: \(\dfrac{OA'}{36}=\dfrac{18-OA'}{18}\Rightarrow OA'=12\left(cm\right)\)
Và: \(\dfrac{A'B'}{AB}=\dfrac{OA'}{OA}\Rightarrow A'B'=\dfrac{AB.OA'}{OA}=\dfrac{4.12}{36}=1,33\left(cm\right)\)
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{12}{OA'+12}\)
\(\Leftrightarrow OA'=24\left(cm\right)\)
Thế \(OA'=24\) vào \(\left(1\right)\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{8}{24}\)
\(\Leftrightarrow A'B'=3\left(cm\right)\)
a)Thấu kính hội tụ cho ảnh A'B' là ảnh thật.
Ảnh A'B' ngược chiều vật và nhỏ hơn vật.
b)Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{30}=\dfrac{1}{45}+\dfrac{1}{d'}\)
\(\Rightarrow d'=90cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{15}{h'}=\dfrac{45}{90}\)
\(\Rightarrow h'=A'B'=30cm\)
b) Ảnh A'B' là ảnh ảo, cùng chiều và nhỏ hơn vật AB.
c) \(\Delta OAB~\Delta OA'B'\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\Rightarrow\dfrac{30}{OA'}=\dfrac{5}{A'B'}\Rightarrow\dfrac{6}{OA'}=\dfrac{1}{A'B'}\) (1)
\(\Delta FOI~\Delta FA'B'\Rightarrow\dfrac{OF}{FA'}=\dfrac{OI}{A'B'}\Rightarrow\dfrac{15}{OF-OA'}=\dfrac{AB}{A'B'}\)\(\Rightarrow\dfrac{15}{15-OA'}=\dfrac{5}{A'B'}\Rightarrow\dfrac{3}{15-OA'}=\dfrac{1}{A'B'}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{6}{OA'}=\dfrac{3}{15-OA'}\Rightarrow\dfrac{2}{OA'}=\dfrac{1}{15-OA'}\Rightarrow30-2OA'=OA'\)\(\Rightarrow3OA'=30\Rightarrow OA'=10\left(cm\right)\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{1}{A'B'}\Rightarrow A'B'=\dfrac{10}{6}\approx1,667\left(cm\right)\)
Vậy khoảng cách từ ảnh tới thấu kính là 10cm, chiều cao của ảnh là khoảng 1,667cm.
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{5}{h'}=\dfrac{40}{15}\Rightarrow h'=1,875cm\)
Tiêu cự thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{40}+\dfrac{1}{15}=\dfrac{11}{120}\)
\(\Rightarrow f=\dfrac{120}{11}cm\approx10,91cm\)