Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{f}\)
\(\Rightarrow\dfrac{1}{16}+\dfrac{1}{d'}=\dfrac{1}{12}\)
\(\Rightarrow d'=48\)
Vậy khoảng cách từ ảnh đến thấu kính là 48cm
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Khoảng cách tử ảnh đến thấu kính:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow d'=\dfrac{d.f}{d-f}=\dfrac{3.2}{3-2}=6\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{6.2}{3}=4\left(cm\right)\)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{8}{7}cm\approx1,14cm\)
a,vì d>f(3cm>2cm) nên vật cho ảnh thật ngược chiều và lớn hơn vật
b,ta có 1/f=1/d+1/d'<=>1/2=1/3+1/d'<=>d'=6cm(f là tiêu cự,d và d' lần lượt là khoảng cách từ vật và ảnh tới thấu kính)=> khoảng cách từ ảnh tới thấu kính tới thấu kính là 6cm
đổi 1m=100cm ta có h/h'=d/d'<=>100/h'=3/6<=>h'=200cm(h và h' lần lượt là chiều cao của vật AB và chiều cao của ảnh A'B')
Vậy độ lớn của ảnh là 200cm
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{8}{8}=1\Rightarrow h=h'\)
Mình chỉ làm phần tính toán thôi nha, còn phần vẽ thì chắc bạn cũng biết vẽ rồi
Bài Giải
a. Dựng ảnh A'B' của vật qua thấu kính ta thấy:
f < d < 2f nên ảnh A'B' là ảnh thật, ngược chiều với vật AB
b.Áp dụng công thức độ phóng đại của ảnh ta có:
\(\dfrac{AB}{A'B'}=\dfrac{d}{d'}=\dfrac{12}{24}=\dfrac{1}{2}\)
=> A'B' = 2AB =4 (cm)
Áp dụng công thức thấu kính ta có:
\(\dfrac{1}{f}\) = \(\dfrac{1}{d}+\dfrac{1}{d'}\)
=> d' = \(\dfrac{d.f}{d-f}\) = \(\dfrac{12.8}{12-8}\) = 24 (cm)