\(\frac{x+2}{5}=\frac{2-3x}{3}\)

Làm giúp tui với ạ đang kẹt

Cảm ơn nhiều:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2022

`Answer:`

\(\frac{x+2}{5}=\frac{2-3x}{3}\)

\(\Leftrightarrow\frac{3.\left(x+2\right)}{5}=\frac{5.\left(2-3x\right)}{3}\)

\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)

\(\Leftrightarrow3x+6=10-15x\)

\(\Leftrightarrow3x+15x=10-6\)

\(\Leftrightarrow18x=4\)

\(\Leftrightarrow x=\frac{2}{9}\)

\(\frac{x+2}{5}=\frac{2-3x}{3}\)

\(\Rightarrow3\times\left(x+2\right)=5\times\left(2-3x\right)\)

\(\Rightarrow3x+6=10-15x\)

\(\Rightarrow3x+15x=-6+10\)

\(\Rightarrow18x=4\)

\(\Rightarrow x=4\div18=\frac{2}{9}\)

23 tháng 10 2020

1) \(\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|=0\)

Ta có : \(\hept{\begin{cases}\left|x+y-\frac{1}{4}\right|^2\ge0\\\left|x-y+\frac{1}{5}\right|\ge0\end{cases}}\Leftrightarrow\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|\ge0\)

Mà \(\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+y-\frac{1}{4}\right|^2=0\\\left|x-y+\frac{1}{5}\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{4}\\x-y=-\frac{1}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-y\\\frac{1}{4}-y-y=\frac{-1}{5}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-y\\-2y=-\frac{9}{20}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-\frac{9}{40}=\frac{1}{40}\\y=\frac{9}{40}\end{cases}}}\)

Vậy .........

2) \(\left|3x+8\right|-2x=5\)

\(\Leftrightarrow\left|3x+8\right|=2x+5\)( 1 )

Ta có : \(\left|3x+8\right|=\orbr{\begin{cases}3x+8\forall x\ge-\frac{8}{3}\\-3x-8\forall x< \frac{-8}{3}\end{cases}}\)

Để giải phương trình ( 1 ) ta quy về giải 2 phương trình sau :

+) \(3x+8=2x+5\) với \(x\ge\frac{-8}{3}\)

\(\Leftrightarrow3x-2x=5-8\)

\(\Leftrightarrow x=-3\left(KTM\right)\)

+) \(-3x-8=2x+5\)với \(x< \frac{-8}{3}\)

\(\Leftrightarrow-5x=13\Leftrightarrow x=\frac{-13}{5}\left(KTM\right)\)

Vậy phương trình vô nghiệm 

c) \(\left|x-2\right|+\left|x+3\right|=6\)

+) với \(x\ge2\)

\(x-2+x+3=6\)

\(\Leftrightarrow2x+1=6\)

\(\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)

+) Với x< -3 

\(2-x-x-3=6\)

\(\Leftrightarrow-2x-1=6\)

\(\Leftrightarrow-2x=7\Leftrightarrow x=\frac{-7}{2}\left(tm\right)\)

Vậy .........

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

1 tháng 12 2019

Đề tớ gõ sai, Sr các cậu...

Đề đúng là :

\(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}=3\)

Giúp tớ nhen...Giải chi tiết giùm nha...Thank you !!!

1 tháng 12 2019

\(\left(\frac{x-3}{90}-1\right)+\left(\frac{x-2}{91}-1\right)+\left(\frac{x-1}{90}-1\right)=0\)

\(\Leftrightarrow\frac{x-93}{90}+\frac{x-93}{91}+\frac{x-93}{92}=0\)

\(\Leftrightarrow\left(x-93\right)\left(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\right)=0\)

mà \(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\ne0\)

\(\Leftrightarrow x-93=0\Leftrightarrow x=93\)

Vậy x=93

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)

Vì \(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\right)=0\)

\(\Leftrightarrow x=1\)

5 tháng 8 2019

Làm mẫu câu a nhé:

Ta có: \(2x=3y\)

   \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)

\(\Rightarrow x=3.5=15\)

\(y=5.2=10\)

5 tháng 8 2019

Ý 1:

\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)

=> x,y=...

\(\frac{x}{3}=\frac{y}{4}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)

=>x,y=...

\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)

=>x,y,z=....

10 tháng 3 2020

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

Khử mẫu : \(12x-12+6x-6=4x+3x-7\)

\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)

\(\Leftrightarrow18x-18=7x-7\)

\(\Leftrightarrow18x+7x=18+7\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

\(b,\left(2x-1\right).\left(x+\frac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+\frac{2}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{1}{2},-\frac{2}{3}\right\}\)

a) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)

\(\Leftrightarrow3x-\frac{1}{6}-5x-\frac{3}{25}=-x+\frac{1}{5}\)

\(\Leftrightarrow3x-5x+x=\frac{1}{5}+\frac{1}{6}+\frac{3}{25}\)

\(\Leftrightarrow-x=\frac{73}{150}\)

\(\Leftrightarrow x=-\frac{73}{150}\)

Vậy : \(x=-\frac{73}{150}\)

30 tháng 8 2016

Tham khảo ở đây nhé bn: olm.vn/hoi-dap/question/686545.html, mk lm r`