K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

a) Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy: Khi m=-1 thì (x,y)=(1;4)

b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)

Ta có: \(x^2+2y^2=18\)

\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)

\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)

\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)

\(\Leftrightarrow3m^2-8m+4=0\)

\(\Leftrightarrow3m^2-2m-6m+4=0\)

\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)

\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)

a: Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-2\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)

x+y=2

=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)

=>\(2m^2+4=5m+2\)

=>\(2m^2-5m+2=0\)

=>(2m-1)(m-2)=0

=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)

31 tháng 1

 

 

11 tháng 1 2022

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)

\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)

\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)

\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy ...

 

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

NV
15 tháng 1

Hệ có nghiệm duy nhất khi: \(\dfrac{3}{1}\ne\dfrac{m}{-2}\Rightarrow m\ne-6\)

Khi đó ta có:

\(\left\{{}\begin{matrix}3x+my=5\\x-2y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+2my=10\\mx-2my=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+6\right)x=3m+10\\y=\dfrac{x-3}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{x-3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{-4}{m+6}\end{matrix}\right.\)

\(2x+y=1\Rightarrow\dfrac{2\left(3m+10\right)}{m+6}+\dfrac{-4}{m+6}=1\)

\(\Leftrightarrow\dfrac{6m+16}{m+6}=1\)

\(\Rightarrow6m+16=m+6\)

\(\Rightarrow m=-2\)

17 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\) 

TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0

TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\) 

\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\) 

\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)

\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )

TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\) 

Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\) 

\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\) 

Gộp cả 2 điều kiện x và y ta được m=-1 và m=0 

Nãy giờ gõ nó cứ bị lỗi :D 

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)