K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có: M(x, y, z) ∈ (P)

⇔ d(M, ( P 1 )) = d(M, ( P 2 ))

⇔|2x + y + 2z + 1| = |2x + y + 2z + 5|

⇔ 2x + y + 2z + 1 = – (2x + y + 2z + 5)

⇔ 2x + y + 2z + 3 = 0

Từ đó suy ra phương trình của (P) là: 2x + y + 2z + 3 = 0.

22 tháng 5 2017

Ôn tập chương III

21 tháng 2 2019

Đáp án A

Vì mặt phẳng (P) song song với mặt phẳng (Q): 2x – y + 2z = 0 nên mặt phẳng (P) có dạng: 2x – y + 2z + d = 0

Mà mặt phẳng (P) đi qua điểm A(2; -1; -2) nên:

2.2 –(-1) + 2.(-2) + d = 0 nên d = -1

Vậy phương trình mặt phẳng (P) là: 2x – y + 2z – 1= 0

9 tháng 2 2019

Chọn đáp án A

NV
4 tháng 4 2022

Chọn \(M\left(-5;0;3\right)\) là điểm nằm trên giao tuyến của (P) và (Q)

\(\overrightarrow{n_P}=\left(1;-3;2\right)\) ; \(\overrightarrow{n_Q}=\left(2;1;-3\right)\)

\(\Rightarrow7\overrightarrow{u}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=7\left(1;1;1\right)\)

Trục Ox có 1 vtcp là \(\overrightarrow{u_1}=\left(1;0;0\right)\)

\(\left[\overrightarrow{u};\overrightarrow{u_1}\right]=\left(0;1;-1\right)\)

Phương trình mặt phẳng cần tìm có dạng:

\(y-1\left(z-3\right)=0\Leftrightarrow y-z+3=0\)

25 tháng 2 2017

Chọn đáp án C

11 tháng 2 2019

1 tháng 4 2018

Chọn C.

Trên mặt phẳng (Q): x + 2y - 2z + 1 = 0 chọn điểm M (-1;0;0).

Do (P) song song với mặt phẳng (Q) nên phương trình của mặt phẳng (P) có dạng: x + 2y - 2z + D = 0 với D ≠ 1.

Vậy có hai mặt phẳng thỏa mãn: x + 2y – 2z + 10 = 0 và x + 2y -2z – 8 = 0.

4 tháng 1 2018

Chọn D.

Mặt cầu (S) có tâm I(-1;2;1) và bán kính

Do (P) song song với mặt phẳng (Q) nên phương trình của mặt phẳng (P) có dạng:

x + 2y – 2z + D = 0 với D ≠ 1.

Vì (P) tiếp xúc với mặt cầu (S) nên d(I;(P)) = R = 3

Vậy có hai mặt phẳng thỏa mãn: x + 2y – 2z – 10 = 0 và x + 2y – 2z + 8 = 0

11 tháng 10 2017

Đáp án B

Điểm M(x,y,z) cách đều hai mặt phẳng (P) và (Q) khi và chỉ khi:

d(M ; (P)) = d(M ; (Q))