\(\sqrt{7}+\sqrt{11}+\sqrt{32}+\sqrt{40}\) và 18

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

\(\sqrt{7}+\sqrt{11}\)\(+\sqrt{32}+\sqrt{40}\) < 18

k mk nha

30 tháng 11 2017

tại sao v bạn ???

14 tháng 11 2017

\(\sqrt{7}+\sqrt{11}+\sqrt{32}+\sqrt{40}\)\(< 18\)nha bạn

14 tháng 11 2017

CHO MÌNH LỜI GIẢI CỤ THỂ , RÕ RÀNG

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

16 tháng 8 2016

Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc

\(\sqrt{\left(40+2\right)^2}=42\)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)

Ta thấy:\(42+2\sqrt{80}>42\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)

11 tháng 8 2015

Tao nói thật nhé Mày là cái đồ óc chó mất dạy

24 tháng 7 2017

Sao bạn lại chửi bạn ấy?

5 tháng 11 2017

a ) \(\sqrt{7}+\sqrt{15}vs7\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)

=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

5 tháng 11 2017

b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)

\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

10 tháng 6 2017

\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)

\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)

Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)