Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Dễ
Bình phương cả 2 vế ta đc
42+2 và 40+2+2.\(4\sqrt{5}\)
42+2 và 42+2.\(4\sqrt{5}\)
Ta thấy \(4\sqrt{5}\) >2
Suy ra 42+2<42+2.\(4\sqrt{5}\)
=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)
Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)
Do (1)<(2)
=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)
Ta có : \(\sqrt{40}>\sqrt{36}=6\)
\(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>1+6=7=\sqrt{49}\)
Ta lại có : \(\sqrt{40+2}=\sqrt{42}\)
Vì \(\sqrt{49}>\sqrt{42}\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Ta thấy:
\(\sqrt{40+2}< \sqrt{49}< 7\) (1)
\(\sqrt{40}>\sqrt{36}>6\) (2)
\(\sqrt{2}>\sqrt{1}>1\) (3)
Từ (2) và (3)
\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)
Từ (1) và (4)
\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
\(\sqrt{7}+\sqrt{11}\)\(+\sqrt{32}+\sqrt{40}\) < 18
k mk nha
\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)
\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)
Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)