Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n_{H_2}=\dfrac{2,24}{22,4}=0,1mol\)
\(2X+H_2SO_4\rightarrow X_2SO_4+H_2\)
0,2 \(\leftarrow\) 0,1
\(\Rightarrow\overline{M_X}=\dfrac{5,4}{0,2}=27\) \(\Rightarrow X_1< 27< X_2\)
Mà X1, X2 thuộc nhóm IA
\(\Rightarrow\left\{{}\begin{matrix}X_1:Na\\X_2:K\end{matrix}\right.\) Gọi \(n_{Na}=x\left(mol\right)\) , \(n_K=y\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BTKL:23x+39y=5,4\\BTe:x+y=2n_{H_2}=0,2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0,15mol\\y=0,05mol\end{matrix}\right.\)
\(\%m_{Na}=\dfrac{0,15\cdot23}{5,4}\cdot100\%=63,89\%\)
\(\%m_K=100\%-63,89\%=36,11\%\)
Khi cô cạn dung dịch thu được muối: \(\left\{{}\begin{matrix}n_{Na^+}=0,15mol\\n_{K^+}=0,05mol\\n_{SO_4^{2-}}=n_{H_2SO_4}=n_{H_2}=0,1mol\end{matrix}\right.\)
\(\Rightarrow m_{m'}=0,15\cdot23+0,05\cdot39+0,1\cdot\left(32+4\cdot16\right)=15g\)
Đây là VD cho dạng bài tương tự nhé! Bạn xem thử!
https://hoc24.vn/hoi-dap/tim-kiem?id=237172646178&q=Cho+4,4g+h%E1%BB%97n+h%E1%BB%A3p+2+kim+lo%E1%BA%A1i+nh%C3%B3m+IIA+thu%E1%BB%99c+hai+chu+k%C3%AC+li%C3%AAn+ti%E1%BA%BFp+t%C3%A1c+d%E1%BB%A5ng+v%E1%BB%9Bi+dung+d%E1%BB%8Bch+HCl+d%C6%B0+thu+%C4%91%C6%B0%E1%BB%A3c+3,36+l%C3%ADt+H2+(%C4%91ktc).+a)+X%C3%A1c+%C4%91%E1%BB%8Bnh+t%C3%AAn+kim+lo%E1%BA%A1i.+b)+T%C3%ADnh+C%+c%E1%BB%A7a+dung+d%E1%BB%8Bch+thu+%C4%91%C6%B0%E1%BB%A3c.
a, \(n_{H_2}=0,09\left(mol\right)\)
BT e, có: 2nX = 2nH2 ⇒ nX = 0,09 (mol)
\(\Rightarrow\overline{M}_X=\dfrac{2,64}{0,09}=29,33\left(g/mol\right)\)
Mà: A, B thuộc 2 chu kì liên tiếp.
→ Mg và Ca.
Ta có: \(\left\{{}\begin{matrix}24n_{Mg}+40n_{Ca}=2,64\\2n_{Mg}+2n_{Ca}=0,09.2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n_{Mg}=0,06\left(mol\right)\\n_{Ca}=0,03\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Mg}=\dfrac{0,06.24}{2,64}.100\%\approx54,55\%\\\%m_{Ca}\approx45,45\%\end{matrix}\right.\)
b, BTNT H, có: \(n_{H_2SO_4}=n_{H_2}=0,09\left(mol\right)\Rightarrow V_{ddH_2SO_4}=\dfrac{0,09}{2}=0,045\left(l\right)\)
BTNT Mg: nMgSO4 = nMg = 0,06 (mol)
\(\Rightarrow C_{M_{MgSO_4}}=\dfrac{0,06}{0,045}=\dfrac{4}{3}\left(M\right)\)
Gọi công thức chung của 2 kim loại là R
PTHH: \(R+2HCl\rightarrow RCl_2+H_2\uparrow\)
Ta có: \(n_{H_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\) \(\Rightarrow\left\{{}\begin{matrix}n_{HCl\left(p/ứ\right)}=0,3\left(mol\right)\\n_R=0,15\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}V_{ddHCl}=\dfrac{0,3\cdot125\%}{1}=0,375\left(l\right)\\\overline{M}_R=\dfrac{4,4}{0,15}\approx29,33\end{matrix}\right.\)
Vì \(24< 29,33< 40\) nên 2 kim loại cần tìm là Magie và Canxi
a)\(n_{H_2}=\dfrac{5,6}{22,4}=0,25\left(mol\right)\)
PTHH: 2Al + 3H2SO4 → Al2(SO4)3 + 3H2
Mol: x 1,5x
PTHH: Mg + H2SO4 → MgSO4 + H2
Mol: y y
Ta có: \(\left\{{}\begin{matrix}27x+24y=5,1\\1,5x+y=0,25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,1\\y=0,1\end{matrix}\right.\)
\(\%m_{Al}=\dfrac{0,1.27.100\%}{5,1}=52,94\%;\%m_{Mg}=100-52,94=47,06\%\)
b)
PTHH: 2Al + 3H2SO4 → Al2(SO4)3 + 3H2
Mol: 0,1 0,15 0,05
PTHH: Mg + H2SO4 → MgSO4 + H2
Mol: 0,1 0,1 0,1
\(m_{ddH_2SO_4}=\dfrac{\left(0,1+0,15\right).98.100}{9,8}=250\left(g\right)\)
mdd sau pứ = 5,1+250-0,15.2 = 254,8(g)
\(C\%_{ddAl_2\left(SO_4\right)_3}=\dfrac{0,05.342.100\%}{254,8}=6,71\%\)
\(C\%_{ddMgSO_4}=\dfrac{0,1.120.100\%}{254,8}=4,71\%\)
Bài 3 :
a) $Mg + H_2SO_4 \to MgSO_4 + H_2$
$n_{Mg} = n_{H_2} = \dfrac{3,36}{22,4} = 0,15(mol)$
$\%m_{Mg} = \dfrac{0,15.24}{13,2}.100\% = 27,27\%$
$\%m_{Cu} = 100\% -27,27\% = 72,73\%$
b) $n_{Cu} = \dfrac{13,2 - 0,15.24}{64}= 0,15(mol)$
$\Rightarrow m_{muối} = 0,15.120 + 0,15.160= 42(gam)$
Bài 4 :
Gọi $n_{Fe} = a(mol) ; n_{Mg} = b(mol)$
$56a + 24b = 18,4(1)$
$Fe + 2HCl \to FeCl_2 + H_2$
$Mg + 2HCl \to MgCl_2 + H_2$
Theo PTHH : $n_{H_2} = a + b = \dfrac{11,2}{22,4} = 0,5(2)$
Từ (1)(2) suy ra a = 0,2 ; b = 0,3
$\%m_{Fe} = \dfrac{0,2.56}{18,4}.100\% = 60,87\%$
$\%m_{Mg} = 100\% -60,87\% = 39,13\%$
b) $n_{HCl} = 2n_{H_2} = 1(mol)$
$V_{dd\ HCl} = \dfrac{1}{0,8}= 1,25(lít)$
Bài 1:
a+b) PTHH: \(Fe+H_2SO_4\rightarrow FeSO_4+H_2\uparrow\)
Ta có: \(n_{H_2}=\dfrac{4,48}{22,4}=0,2\left(mol\right)=n_{Fe}\)
\(\Rightarrow m_{Fe}=0,2\cdot56=11,2\left(g\right)\) \(\Rightarrow m_{Cu}=6,4\left(g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Fe}=\dfrac{11,2}{17,6}\cdot100\%\approx63,64\%\\\%m_{Cu}=36,36\%\end{matrix}\right.\)
c) Ta có: \(n_{Cu}=\dfrac{6,4}{64}=0,1\left(mol\right)\)
Bảo toàn nguyên tố: \(n_{Fe_2\left(SO_4\right)_3}=\dfrac{1}{2}n_{Fe}=0,1\left(mol\right)=n_{CuSO_4}\)
\(\Rightarrow m_{muối}=0,1\cdot400+0,1\cdot160=56\left(g\right)\)
Bài 2:
Quy đổi hh gồm Fe (a mol) và O (b mol)
\(\Rightarrow56a+16b=27,6\) (1)
Ta có: \(n_{SO_2}=\dfrac{5,04}{22,4}=0,225\left(mol\right)\)
Bảo toàn electron: \(3n_{Fe}=2n_O+2n_{SO_2}\) \(\Rightarrow3a-2b=0,45\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=0,39\\b=0,36\end{matrix}\right.\)
Bảo toàn nguyên tố: \(n_{Fe_2\left(SO_4\right)_3}=\dfrac{1}{2}n_{Fe}=0,195\left(mol\right)\) \(\Rightarrow m_{Fe_2\left(SO_4\right)_3}=0,195\cdot400=78\left(g\right)\)
a, \(n_{H_2}=\dfrac{2,479}{24,79}=0,1\left(mol\right)\)
BT e, có: nR = 2nH2 = 0,2 (mol)
\(\Rightarrow\overline{M}_R=\dfrac{5,4}{0,2}=27\left(g/mol\right)\)
Mà: 2 KL thuộc 2 chu kì liên tiếp và thuộc nhóm IA.
→ Na và K.
b, Có: 23nNa + 39nK = 5,4 (1)
BT e, có: nNa + nK = 2nH2 = 0,2 (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}n_{Na}=0,15\left(mol\right)\\n_K=0,05\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Na}=\dfrac{0,15.23}{5,4}.100\%\approx63,89\%\\\%m_K\approx36,11\%\end{matrix}\right.\)
b, BTNT H, có: \(n_{H_2SO_4\left(pư\right)}=n_{H_2}=0,1\left(mol\right)\)
\(\Rightarrow n_{H_2SO_4\left(dư\right)}=0,1.20\%=0,02\left(mol\right)\)
\(\Rightarrow V_{ddH_2SO_4}=\dfrac{0,1+0,02}{1}=0,12\left(l\right)\)
BTNT Na, có: nNa2SO4 = 1/2.nNa = 0,075 (mol)
BTNT K, có: nK2SO4 = 1/2.nK = 0,025 (mol)
\(\Rightarrow\left\{{}\begin{matrix}C_{M_{H_2SO_4\left(dư\right)}}=\dfrac{0,02}{0,12}=\dfrac{1}{6}\left(M\right)\\C_{M_{Na_2SO_4}}=\dfrac{0,075}{0,12}=0,625\left(M\right)\\C_{M_{K_2SO_4}}=\dfrac{0,025}{0,12}=\dfrac{5}{24}\left(M\right)\end{matrix}\right.\)