K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ad ơi cho em hỏi cách chứng minh ạ. Và ví dụ như khi làm bài có cần chứng minh lại không ạ?

31 tháng 8 2021

Định lý Đào được coi là khó bởi vì nếu tính toán bằng tọa độ Barycentric phải mất khoảng 40 trang xem tại đây: https://groups.yahoo...s/messages/1539. Nikolaos Dergiades đã có 1 cách chứng minh rất đẹp cho định lý này, tuy nhiên nó không hề sơ cấp: Dao’s Theorem on Six Circumcenters associated.pdf

8 tháng 2 2021

Bài I

a ĐKXĐ : \(\left\{{}\begin{matrix}2-x\ge0\\2-x^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\-\sqrt{2}\le x\le\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\) 

\(\Rightarrow\left(2-x^2\right)=\left(\sqrt{2-x}\right)^2\Leftrightarrow x^4-4x^2+4=2-x\Leftrightarrow x^4-4x^2+x+2=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-3x^2+3x-2x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\left(1\right)\\x^3+x^2-3x-2=0\left(2\right)\end{matrix}\right.\) 

Từ (1) \(\Rightarrow x=1\left(TM\right)\) 

Từ (2) \(\Rightarrow x^3+2x^2-x^2-2x-x-2=0\Leftrightarrow\left(x+2\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x-1=0\end{matrix}\right.\) 

*Nếu x+2=0 \(\Leftrightarrow x=-2\left(L\right)\)

*Nếu \(x^2-x-1=0\Leftrightarrow x^2-x+\dfrac{1}{4}=\dfrac{5}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\) 

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{1}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\left(L\right)\\x=\dfrac{-\sqrt{5}+1}{2}\left(TM\right)\end{matrix}\right.\) 

Vậy...

QT
Quoc Tran Anh Le
Giáo viên
8 tháng 2 2021

Ảnh bị up thiếu, đề còn thiếu đây nhé undefined

 

7 tháng 2 2021

I.1.

ĐK:  \(x\in R\)

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow2x^2+6x+2=2\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow x^2+1+x^2+6x+9-2\left(x+3\right)\sqrt{x^2+1}=8\)

\(\Leftrightarrow\left(x+3-\sqrt{x^2+1}\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3-\sqrt{x^2+1}=2\sqrt{2}\\x+3-\sqrt{x^2+1}=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+3-2\sqrt{2}\left(1\right)\\\sqrt{x^2+1}=x+3+2\sqrt{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+1}=x+3-2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3-2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3-2\sqrt{2}\right)x+17-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\sqrt{2}-3\\2\left(3-2\sqrt{2}\right)x=12\sqrt{2}-16\end{matrix}\right.\)

\(\Leftrightarrow x=2\sqrt{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+1}=x+3+2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3+2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3+2\sqrt{2}\right)x+17+12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3-2\sqrt{2}\\2\left(3+2\sqrt{2}\right)x=-16-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow x=-2\sqrt{2}\)

Vậy phương trình có nghiệm \(x=\pm2\sqrt{2}\)

7 tháng 2 2021

Câu 1 :

Ta có : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

- Đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)

PT TT : \(a^2+3x=a\left(x+3\right)\)

\(\Leftrightarrow a^2-ax-3a+3x=0\)

\(\Leftrightarrow a^2-a\left(x+3\right)+3x=0\)

Có : \(\Delta=b^2-4ac=\left(a+3\right)^2-4.3a=a^2+6a+9-12a\)

\(=a^2-6a+9=\left(a-3\right)^2\ge0\forall a\)

TH1 : \(\Delta=0\Rightarrow a=3\left(TM\right)\)

\(\Rightarrow\sqrt{x^2+1}=3\)

\(\Rightarrow x=\pm2\sqrt{2}\)

TH2 : \(\Delta>0\)

=> Pt có 2 nghiệm phân biệt :\(\left\{{}\begin{matrix}a=\dfrac{x+3+\sqrt{\left(x-3\right)^2}}{2}\\a=\dfrac{x+3-\sqrt{\left(x-3\right)^2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+\left|x-3\right|}{2}\\\sqrt{x^2+1}=\dfrac{x+3-\left|x-3\right|}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=\dfrac{2x}{2}=x\\\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\\\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=9\\x^2+1=x^2\end{matrix}\right.\)

\(\Rightarrow x=\pm2\sqrt{2}\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm2\sqrt{2}\right\}\)

 

huhu khocroi
Lớp 10 rồi mà vẫn không biết làm bất đẳng thức lớp 9  :'((

8 tháng 4 2021

Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp  10 thì .... chắc quyên thôi ...

Câu 1: 

PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

 Vậy \(S=\left\{2;3\right\}\)

Câu 2:

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(-5;5\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(2;-3\right)\)

2 tháng 4 2021

Câu 5:

Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bất đẳng thức Cosi ta có:

\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

1 tháng 4 2021

5.

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)

\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)

1 tháng 4 2021

Cách 2 phần tìm max bài 5:

Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)

\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

3 tháng 4 2021

undefined

4 tháng 4 2021

accc, mọi người , đây là ảnh chụp của mathtype hổng phải copy đâu nhaa

9 tháng 2 2021

Bài 2.

Tìm Min.

\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

Đẳng thức xảy ra khi $x=y=z=1.$

Tìm Max.

Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)

Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)

Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)

Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))

9 tháng 2 2021

Đề bất đẳng thức đơn giản v:vv

3c) Ta sẽ chứng minh 

\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)

Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)

Đúng vì theo AM-GM ta có:

\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)

Xong.

Toán C89 :

Ta có : \(x^3+y^3+6xy\le8\)

\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)

\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)

Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)

\(=x^2+y^2-xy+2.\left(x+y\right)+4\)

\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)

Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)

Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy Min \(Q=2\) khi \(x=y=1\)

Toán C88 :

Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :

\(\left(a+1\right)+4\ge4\sqrt{a+1}\)

\(\left(b+1\right)+4\ge4\sqrt{b+1}\)

\(\left(c+1\right)+4\ge4\sqrt{c+1}\)

Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)

\(\Leftrightarrow a+b+c\ge9\)

Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)

Chứng minh tương tự ta có :

\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)

Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)