K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

5.

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)

\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)

1 tháng 4 2021

Cách 2 phần tìm max bài 5:

Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)

\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

huhu khocroi
Lớp 10 rồi mà vẫn không biết làm bất đẳng thức lớp 9  :'((

8 tháng 4 2021

Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp  10 thì .... chắc quyên thôi ...

Câu 1: 

PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

 Vậy \(S=\left\{2;3\right\}\)

Câu 2:

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(-5;5\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(2;-3\right)\)

2 tháng 4 2021

Câu 5:

Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bất đẳng thức Cosi ta có:

\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

3 tháng 4 2021

undefined

4 tháng 4 2021

accc, mọi người , đây là ảnh chụp của mathtype hổng phải copy đâu nhaa

C889:

Áp dụng BĐT Cauchy-Schwars dạng Engel, ta có:

\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge\dfrac{\left(x+y\right)^2}{x+y}=\dfrac{4^2}{4}=4\)

Dấu"=" xảy ra khi x=y=2

29 tháng 4 2021

[Toán.C889 _ 29.4.2021]

A= \(\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\)

   =\(\dfrac{4\left(16-3xy\right)}{xy}\)

   =\(\dfrac{64}{xy}-12\)

mà xy\(\le\)4

nên \(\dfrac{64}{xy}\ge16\)

vậy A \(\ge\)16-12=4

dấu = xảy ra khi và chỉ khi x=y=2

29 tháng 3 2021

\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\2mx-2y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx+x=2+2m\\x+2y=2\end{matrix}\right.\\ \left\{{}\begin{matrix}x\left(2m+1\right)=2\left(m+1\right)\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\\dfrac{2\left(m+1\right)}{2m+1}+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\2m+2+4my+2y=4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y\left(4m+2\right)=2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2\left(m+1\right)}{2m+1}\\y=\dfrac{2m}{4m+2}\end{matrix}\right.\\ thay.....x,y....vào....ta.....được\\ \dfrac{2\left(m+1\right)}{2m+1}+\dfrac{2m}{4m+2}=1\\ \Leftrightarrow\dfrac{4\left(m+1\right)}{4m+2}+\dfrac{2m}{4m+2}=\dfrac{4m+2}{4m+2}\\ \Rightarrow4m+4+2m=4m+2\\ \Leftrightarrow2m=-2\\ \Leftrightarrow m=-1\\ vậy...m=-1...thì...tm\)                         \(thay....m=3...vào...ta...có...hpt:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\) 

 

 

 

 

 

 

 

\(thay...m=3....ta...có:\\ \left\{{}\begin{matrix}x+2y=2\\3x-y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=2\\6x-2y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=8\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8}{7}\\y=\dfrac{3}{7}\end{matrix}\right.\\ vậy...với..m=3...thì...hệ....phương....trình....có...nghiệm...duy...nhất\left\{x=\dfrac{8}{7};y=\dfrac{3}{7}\right\}\)

17 tháng 3 2021

Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)

Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)

Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)

Suy ra tam giác BIJ cân tại J nên JB=JI 
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B

BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)

suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)

\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE 

suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)

hay \(SJ.EK=SK.JE\)

c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C

suy ra undefined
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)

\( \widehat{JIC}+ \widehat{ILC}=90^o\)

\(\widehat{JCI}+ \widehat{JCL}=90^o\)

nên  \(\widehat{ILC}= \widehat{JCL}\)

suy ra JC=JL nên J là trung điểm IL

Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)

\(\widehat{AIB}=\widehat{ACI}+90^o\)

nên  \(\widehat{ACL}=\widehat{AIB}\)

Lại có: \(\widehat{LAC}=\widehat{BAI}\)

nên tam giác ABI \(\backsim\) tam giác ALC

suy ra \(AB.AC=AI.AL\)

Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)

suy ra \(BD.AC=AD.EC\)

cùng với\( \widehat{BDA}=\widehat{ECA}\)

nên tam giác ABD đồng dạng AEC

suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)

vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)

từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE

nên \(\widehat{ADI}=\widehat{ALE}\)

mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)

nên JM//LE

J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)

 

27 tháng 3 2021

C.544. Thiếu điều kiện a;b;c dương

\(a+b+c=3\Rightarrow ab+bc+ca\le3\)

\(\Rightarrow\sum\dfrac{ab}{\sqrt{c^2+3}}\le\sum\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}=\sum\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)

Ủa còn phần: \(\sum\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\) nó là C544 hay C545 vậy anh?

Nếu là C545 riêng thì đề bài sai, hai vế của BĐT không đồng bậc

28 tháng 3 2021

C545 bị sai đề nên mình sửa luôn, nếu không phải thì thôi...

\(\Sigma\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\Sigma\left(\dfrac{1}{a}\right)\) \(\forall a,b,c>0\)

 

Giải: 

Xét \(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b^2c}\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}=\dfrac{\dfrac{1}{a^3}}{\dfrac{1}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}\)

Đặt \(\left(x;y;z\right)\rightarrow\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\)

\(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{x^3}{y\left(y+z\right)}\)

Khi đó ta chỉ cần chứng minh \(\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{1}{2}\left(x+y+z\right)\)

Áp dụng BĐT Cauchy: 

\(\dfrac{x^3}{y\left(y+z\right)}+\dfrac{y}{2}+\dfrac{y+z}{4}\ge3\sqrt[3]{\dfrac{x^3\cdot y\left(y+z\right)}{8y\left(y+z\right)}}=\dfrac{3x}{2}\)

\(\Leftrightarrow\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3x}{2}-\dfrac{3y}{4}-\dfrac{z}{4}\)

\(\Rightarrow\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3}{2}\left(x+y+z\right)-\dfrac{3}{4}\left(x+y+z\right)-\dfrac{1}{4}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c>0\)

 

 

24 tháng 3 2021

Cho em hỏi là khi đăng câu này lên anh có sẵn lời giải không ạ?

Vì em từng gặp bài này rồi nhưng không giải được, sau đó em hỏi thầy thì thầy nói đây là bài toán sai, phương trình này không thể giải được.

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 3 2021

Đây là bài toán của các bạn gửi về hỏi em nhé, anh không có answer.

1 tháng 11 2021

anh gửi câu hỏi mà không ai trả lời luôn