Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha
Có \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)
\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 3:
Xét \(\Delta AIP\) theo quy tắc trung điểm có:
\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)
Làm tương tự vs các tam giác còn lại
\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)
\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)
Cộng vế vs vế
\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)
\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)
a) Ta có:
\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)
\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)
\(MG=\frac{1}{4}GA\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\frac{3}{4}\overrightarrow{GA}\\\overrightarrow{MA}=3\overrightarrow{GM}\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
\(=\overrightarrow{MA}+3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GM}+3\overrightarrow{MG}+\overrightarrow{0}=\overrightarrow{0}\)
b/
Đề sai, đẳng thức đúng phải là: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=3\overrightarrow{GG'}\)
c/
Đề tiếp tục có vấn đề \(4\overrightarrow{IO}\) ở vế phải điểm O là điểm nào?
Lời giải:
Áp dụng các công thức sau: \(|\overrightarrow {a}|^2=\overrightarrow{a}.\overrightarrow{a}\)
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{0}\) nếu \(\overrightarrow{a}\perp \overrightarrow{b}\)
Ta có:
\(BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{IB}+AB^2.\overrightarrow{IC}\)
\(=BC^2.\overrightarrow{IA}+AC^2.(\overrightarrow{IA}+\overrightarrow{AB})+AB^2.(\overrightarrow{IA}+\overrightarrow{AC})\)
\(=BC^2.\overrightarrow{IA}+\overrightarrow{IA}(AC^2+AB^2)+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)
\(=2BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)
\(=\overrightarrow{BC}.\overrightarrow{BC}.\overrightarrow{HA}+\overrightarrow{AC}.\overrightarrow{AC}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AB}.\overrightarrow{AC}\)
\(=\overrightarrow {BC}.\overrightarrow{0}+\overrightarrow{AC}.\overrightarrow{0}+\overrightarrow{AB}.\overrightarrow{0}=\overrightarrow {0}\)
Công thức \(\left|\overrightarrow{a}\right|^2=\overrightarrow{a}.\overrightarrow{a}\)và \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{0}\)nếu \(\overrightarrow{a}\perp\overrightarrow{b}\) chứng minh như nào ạ ?
Câu 1:
vecto AM+vecto BN+vecto CP
=1/2(vecto AB+vecto AC+vecto BA+vecto BC+vecto CA+vecto CB)
=1/2*vecto 0
=vecto 0
Lời giải:
a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.
$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$
$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$
$=2\overrightarrow{IM}$ (đpcm)
b)
\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)
\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)
\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)
c)
\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)
\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)
Lời giải:
a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.
$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$
$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$
$=2\overrightarrow{IM}$ (đpcm)
b)
\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)
\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)
\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)
c)
\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)
\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)