Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{AI}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IB}+\overrightarrow{AC}=0\)
\(\Leftrightarrow\overrightarrow{IB}=\overrightarrow{CA}\)
\(\Rightarrow\) I là 1 đỉnh của hình bình hành ABIC
2.
Gọi N là trung điểm AB \(\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}\)
\(\overrightarrow{MA}+\overrightarrow{BM}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MC}=\dfrac{1}{2}\overrightarrow{AB}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AN}\)
\(\Rightarrow\) M là 1 đỉnh của hình bình hành ANCM
\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)
\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)
\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)
\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)
\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)
\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)
\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\) \(trung\) \(điểm\) \(BC)\)
\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)
→IB+→IA−→IC−→CM=→0
=>\(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IM}=\overrightarrow{0}\)
=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{IM}\)
Đặt K là trung điểm AB
=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{2IK}\)(T/c trung tuyến)
=>\(\overrightarrow{2IK}=\overrightarrow{IM}\)
=>K,M,I thẳng hàng
Vậy điểm M thuộc đoạn KI sao cho \(\dfrac{\overrightarrow{IK}}{\overrightarrow{IM}}=\dfrac{1}{2}\)
Lời giải:
a) Ta có:
\(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{IA}+\overrightarrow{IB}=2(\overrightarrow{IC}-\overrightarrow{IB})\)
\(\Leftrightarrow \overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{BC}\)
Gọi \(M\) là trung điểm của $AB$ thì \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Rightarrow 2\overrightarrow{BC}=\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}\)
\(\Leftrightarrow 2\overrightarrow{BC}=2\overrightarrow{IM}\Leftrightarrow \overrightarrow{BC}=\overrightarrow{IM}\)
Điểm $I$ là điểm thỏa mãn \(BIMC\) là hình bình hành
b) \(3\overrightarrow {DB}-2\overrightarrow{DC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{DB}+2(\overrightarrow{DB}-\overrightarrow{DC})=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{DB}+2\overrightarrow{CB}=0\Leftrightarrow \overrightarrow{DB}=2\overrightarrow{BC}\)
Điểm $I$ nằm trên đường thẳng $BC$ sao cho $DB=2BC$ và $B$ nằm giữa $D$ và $C$
c)
Ta có: \(\overrightarrow {AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{CB}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}-\overrightarrow{DB}=\overrightarrow{AB}-2\overrightarrow{BC}\)
Từ hai điều trên suy ra \(2\overrightarrow{AI}=\overrightarrow{AD}\Rightarrow \) $A,D,I$ thẳng hàng.
Câu a
Thừa nhận định lý: trên đường thẳng BC với điểm M thuộc BC và điểm A bất kỳ thì \(\dfrac{MC}{BC}\).\(\overrightarrow{AB}\) + \(\dfrac{BM}{BC}\).\(\overrightarrow{AC} = \overrightarrow{AM}\)(tạm thời thì mình đang gấp, chưa chúng minh được) cái này là định lý ngoài nha, đừng vẽ lên hình
Gọi điểm A' là giao điểm của AI và BC
áp dụng định lý trên: \(\overrightarrow{IA'} = \dfrac{A'C}{BC}.\overrightarrow{IB} + \dfrac{A'B}{BC}.\overrightarrow{IC}\) (*)
sử dụng dịnh lý đường phân giác \(\dfrac{A'C}{AC}=\dfrac{A'B}{AB}\) và tỉ lệ này bằng với \(\dfrac{BC}{AC+AB}=\dfrac{BC}{b+c}\) (định lý về phân số \(\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a+c}{b+d}\) )
suy ra \(\dfrac{A'C}{BC}=\dfrac{AC}{b+c}=\dfrac{b}{b+c}\) (1)
và \(\dfrac{A'B}{BC}=\dfrac{AB}{b+c}=\dfrac{c}{b+c}\) (2)
Thay (1), (2) vào (*)
ta có \(\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\) (3)
Mặt khác ta lại có \(\dfrac{\overrightarrow{IA'}}{\overrightarrow{IA}}\)=\(-\dfrac{IA'}{IA}\) (do 2 vecto đối nhau)
suy ra \(\overrightarrow{IA'}\)=\(-\dfrac{IA'}{IA}\).\(\overrightarrow{IA}\)=\(-\dfrac{A'C}{AC}\).\(\overrightarrow{IA}\)=\(-\dfrac{a}{b+c}\).\(\overrightarrow{IA}\) (sử dụng tiếp tục định lý đường phân giác nha bạn \(\dfrac{IA'}{IA}=\dfrac{A'C}{AC}\) ) (4)
Từ (3) và (4) ta suy ra \(-\dfrac{a}{b+c}\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\)
loại \(b+c\) trong cả 2 vế ta còn lại
\(-a.\overrightarrow{IA'} = b.\overrightarrow{IB} + c.\overrightarrow{IC}\) \(\leftrightarrow\)\(a.\overrightarrow{IA'} + b.\overrightarrow{IB} + c.\overrightarrow{IC}= \overrightarrow{0}\)
a) Ta có:
\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)
\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)