Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
Bạn có thể cho mình biết cách giải được không vậy bạn.
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)
\(=\frac{1}{100}\)
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~