K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Đáp án B

Ta có y = 4 sin x − 3 cos x = 5 4 5 sinx − 3 5 cos x = 5 sin x − α  với   sin α = 3 5 cos α = 4 5

Ta có   − 1 ≤ sin x − α ≤ 1 ⇒ − 5 ≤ 5 sin x − α ≤ 5 ⇒ M = 5 m = − 5

15 tháng 3 2017

Chọn A.

Phương pháp: Sử dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất.

Vậy có 1 số nguyên dương là 3 nằm giữa M và m

8 tháng 2 2018

3 tháng 3 2019

Đáp án B

21 tháng 7 2019

Đáp án D

f ' x = 2 cos x + 2 cos 2 x = 2 cos x + 4 cos 2 x − 2.

f ' x = 0 ⇔ cos x = − 1 cos x = 1 2 ⇔ x = π + k 2 π x = ± π 3 + k 2 π k ∈ ℤ .

=>M=   3 3 2 , m=0

24 tháng 12 2019

Đáp án D.

Phương pháp

Phương pháp tìm GTLN, GTNN của hàm số y = f x trên  [ a ; b ] .

+) Giải phương trình y ' = 0 ⇒  các nghiệm  x i ∈ a ; b

+) Tính các giá trị  f a ; f b ; f x i

+) So sánh và kết luận: 

max a ; b f x = max f a ; f b ; f x i ; min a ; b f x = min f a ; f b ; f x i

Cách giải

11 tháng 4 2019

Chọn B

12 tháng 6 2018

16 tháng 6 2017

Đáp án D.

Phương pháp

Sử dụng tập giá trị của hàm y = sin x :   1 ≤ sin x ≤ 1  để đánh giá hàm số bài cho

Cách giải

Ta có: 

− 1 ≤ s i n   x ≤ 1 ⇒ − 1 ≤ − s i n   x ≤ 1

2 − 1 ≤ 2 − s i n   x ≤ 2 + 1 ⇔ 1 ≤ 2 − s i n   x ≤ 3 ⇒ M = 3 ; m = 1

 

15 tháng 2 2017

Chọn B.

Phương pháp

- Tính y' , tìm các nghiệm của y' = 0 .

- Tính giá trị của hàm số tại các điểm đầu mút và các điểm vừa tìm được ở bước trên và so sánh kết quả.

4 tháng 11 2017

Đáp án B

Tập xác định: D = ℝ \ 1 2 ⇒  Hàm số y = m x + 1 2 x − 1  liên tục và đơn điệu trên 1 ; 3  

  ⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5

  ⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3

Vậy có 2 giá trị m thỏa mãn.