Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)
thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)
Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể
⇒ 1 x + 1 y = 1 6 (1)
vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể ⇒ 2. 1 x + 3. 1 y = 2 5 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15
Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.
Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.
II. Gọi x, y lần lượt là thời gian vòi thứ nhất và vòi thứ hai chảy riêng để đầy bể. Điều kiện: x>0, y>0
- Trong 1 giờ: - Vòi 1 chảy được: \(\frac{1}{x}\) (Bể)
- Vòi 2 chảy được: \(\frac{1}{y}\) (bể) Đổi: 3 giờ 36 phút = 18/5 giờ.
- cả hai vòi chảy được: 5/18 (bể). Theo đề bài ta có phương trình: 1/x + 1/y = 5/18 (1)
- Trong 2 giờ vòi 1 chảy được: 2/x (bể). Trong 6 giờ vòi hai chảy được: 6/y (bể).
Theo đề bài ta có phương trình: 2/x + 6/y = 1 (2).
Từ (1) và (2) ta có hệ phương trình: 1/x+ 1/y = 5/18
2/x + 6/y = 1. Giải hệ phương trình trên bằng cách đặt ẩn phụ ta được: x= 6 y= 9. Vậy thời gian vòi 1 và 2 chảy riêng để đầy bể lần lượt là 6 giờ và 9 giờ.
Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)
Trong 1 giờ vòi 1 chảy được 1/x ( bể)
Trong 1 giờ vời 2 chảy được 1/y (bể)
Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )
=> ta có phương trình 1/x + 1/y = 1/12 (1)
Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có
4/x + 3/y = 3/10 (2)
Từ (1) và (2) ta có hệ phương trình
1/x +1/y =1/12
4/x+3/y = 3/10
(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)
Lời giải:Giả sử vòi 1 và vòi 2 chảy riêng trong lần lượt $a$ và $b$ giờ thì sẽ đầy bể.
Khi đó, trong 1 giờ thì:
Vòi 1 chảy được $\frac{1}{a}$ bể, vòi 2 chảy được $\frac{1}{b}$ bể.
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{2}{a}+\frac{3}{b}=\frac{4}{5}\\ \frac{3}{a}+\frac{1,5}{b}=\frac{1}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{20}\\ \frac{1}{b}=\frac{7}{30}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=20\\ b=\frac{30}{7}\end{matrix}\right.\) (h)
Vậy...........
Gọi x(giờ) là thời gian vòi 1 chảy đầy bể y(giờ) là thời gian vòi 2 chảy đầy bểTrong 1 giờ thì vòi 1 chảy được \(\dfrac{1}{x}\) bể, còn vòi 2 chảy được \(\dfrac{1}{y}\) bể.(1) Nếu vòi 1 chảy trong 2h, vòi 2 chảy trong 3h thì được\(\dfrac{4}{5}\) bể nên ta có phương trình:
2 \(\dfrac{1}{x}\) +3 \(\dfrac{1}{y}\) = \(\dfrac{4}{5}\) <=> 2/x + 3/y = 4/5 (bể)
(2) Nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 1h30ph (hay 1,5h) thì được \(\dfrac{1}{2}\)bể nên ta có phương trình:
3\(\dfrac{1}{x}\)+1,5\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) <=> 3/x + 1,5/y=1/2 (bể)
Từ (1),(2) ta có hệ PT:(3) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{4}{5}\\\dfrac{3}{x}+\dfrac{1,5}{y}=\dfrac{1}{2}\end{matrix}\right.\)
đặt a=\(\dfrac{1}{x}\) ; b= \(\dfrac{1}{y}\) ta có:(3) <=> \(\left\{{}\begin{matrix}2a+3b=\dfrac{4}{5}\\3a+1,5b=\dfrac{1}{2}\end{matrix}\right.\) *đoạn này tui bấm máy tính* <=> \(\left\{{}\begin{matrix}a=\dfrac{1}{20}\\b=\dfrac{7}{30}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{20}\\\dfrac{1}{y}=\dfrac{7}{30}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=20\\y=\dfrac{30}{7}\end{matrix}\right.\)(nhận)Vậy vòi 1 chảy riêng thì sau 20h thì đầy bể, vòi 2 là 30/7h
Đổi 3h36 phút = \(3,6h\)
Gọi thời gian mà vòi thứ 1 chảy 1 mình đầy bể là x ( giờ )\(\left(x>3,6\right)\)
Gọi thời gian mà vòi thứ 2 chảy 1 mình đầy bể là y ( giờ ) \(\left(y>3,6\right)\)
1 giờ vòi 1 chảy được 1/x ( bể )
1 giờ vòi 2 chảy được 1/y ( bể )
Cả 2 vòi 1 giờ chảy được: \(\frac{1}{3,6}\left(h\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\left(1\right)\)
Vì nếu hai vòi chảy trong 1,5h rồi khóa vòi 1, vòi 2 chảy trong 3h nữa thì đầy bể nên ta có:
\(\frac{1,5}{x}+\frac{1,5}{y}+\frac{3}{y}=1\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1,5}{x}+\frac{1,5}{y}=\frac{5}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{y}=\frac{7}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{36}{7}\left(tm\right)\\x=12\left(tm\right)\end{cases}}\)
Vậy vòi 1 chảy 1 mình trong 12h đầy bể, vòi 2 chảy 1 mình trong 36/7 giờ thì đầy bể
( đúng ko ta )
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là a,b
Theo đề, ta có: 1/a+1/b=1/12 và 4/a+18/b=1
=>a=28 và b=21
Gọi thời gian vòi một chảy một mình thì đầy bể là \(x\left(x>12\right)\) (giờ)
Thời gian vòi hai chảy một mình thì đầy bể là \(y\left(y>12\right)\) (giờ)
Trong một giờ vòi một chảy được \(\dfrac{1}{x}\) (bể)
Trong một giờ vòi hai chảy được \(\dfrac{1}{y}\) (bể)
Hai vòi cùng chảy vào một bể không có nước thì sau \(12\) giờ thì đầy bể
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\left(1\right)\)
Người ra mở cả hai vòi chảy trong \(4\) giờ được \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{4}{x}+\dfrac{4}{y}\) bể và để vòi một chảy tiếp trong \(14\) giờ nữa thì vòi một chảy được \(\dfrac{14}{x}\) bể
\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{14}{x}=1\)
\(\Rightarrow\dfrac{18}{x}+\dfrac{4}{y}=1\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{18}{x}+\dfrac{4}{y}=1\end{matrix}\right.\)
Giải hệ phương trình trên ta được \(\left\{{}\begin{matrix}x=21\\y=28\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy thời gian vòi một chảy một mình thì đầy bể là \(21\) giờ, thời gian vòi hai chảy một mình thì đầy bể là \(28\) giờ.
Gọi thời gian vòi 1 chảy một mình đầy bể là x (h), thời gian vòi 2 chảy một mình đầy bể là y (h) (x; y > 1,5)
Mỗi giờ vòi I chảy được 1 x (bể), vòi II chảy được 1 y bể nên cả hai vòi chảy được 1 x + 1 y bể
Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình: 1 x + 1 y = 2 3 (1)
Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1 3 h thì được 1 5 bể nên ta có phương trình 0 , 25 x + 1 3 y = 1 5 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 ⇔ 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5
(thỏa mãn)
Vậy thời gian vòi 2 chảy một mình đầy bể là 2,5h
Đáp án: A
Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.
Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).
Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:
6 * 2x = 1 (bể đầy)
Từ đó, ta có:
12x = 1
x = 1/12
Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.
Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.
Gọi thời gian vòi 1 chảy 1 mình đầy bể là x(h), thời gain vòi 2 chảy 1 mình đầy bể là y (h) (x; y > 1,5)
Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình 1 x + 1 y = 2 3 (1)
Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1/3h thì được 1/5 bể nên ta có:
0 , 25 x + 1 3 y = 1 5 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5 ( t m d k )
Vậy thời gian 2 vòi chảy 1 mình đầy bể là 2,5h
Đáp án:A