K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Gọi thời gian vòi 1 chảy một mình đầy bể là x (h), thời gian vòi 2 chảy một mình đầy bể là y (h) (x; y > 1,5)

Mỗi giờ vòi I chảy được 1 x (bể), vòi II chảy được 1 y bể nên cả hai vòi chảy được 1 x + 1 y bể

Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình: 1 x + 1 y = 2 3 (1)

Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1 3 h thì được 1 5 bể nên ta có phương trình 0 , 25 x + 1 3 y = 1 5 (2)

Từ (1) và (2) ta có hệ phương trình:

1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 ⇔ 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5

(thỏa mãn)

Vậy thời gian vòi 2 chảy một mình đầy bể là 2,5h

Đáp án: A

6 tháng 11 2023

Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.

Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).

Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:

6 * 2x = 1 (bể đầy)

Từ đó, ta có:

12x = 1

x = 1/12

Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.

Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.

25 tháng 6 2017

Gọi thời gian vòi 1 chảy 1 mình đầy bể là x(h), thời gain vòi 2 chảy 1 mình đầy bể là y (h) (x; y > 1,5)

Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình 1 x + 1 y = 2 3 (1)

Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1/3h thì được 1/5 bể nên ta có:

0 , 25 x + 1 3 y = 1 5    (2)

Từ (1) và (2) ta có hệ phương trình:

1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5 ( t m d k )

Vậy thời gian 2 vòi chảy 1 mình đầy bể là 2,5h

Đáp án:A

2 tháng 2 2020

Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)

Trong 1 giờ vòi 1 chảy được 1/x ( bể)

Trong 1 giờ vời 2 chảy được 1/y (bể)

Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )

=> ta có phương trình 1/x + 1/y = 1/12                            (1)

Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có 

4/x + 3/y = 3/10                     (2)

Từ (1) và (2) ta có hệ phương trình 

1/x +1/y =1/12

4/x+3/y = 3/10

(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)

25 tháng 6 2019

Bn có làm đc bài 1 ko

Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là a,b

Theo đề, ta có: 1/a+1/b=1/12 và 4/a+18/b=1

=>a=28 và b=21

5 tháng 6 2023

Gọi thời gian vòi một chảy một mình thì đầy bể là \(x\left(x>12\right)\) (giờ)

Thời gian vòi hai chảy một mình thì đầy bể là \(y\left(y>12\right)\) (giờ)

Trong một giờ vòi một chảy được \(\dfrac{1}{x}\) (bể)

Trong một giờ vòi hai chảy được \(\dfrac{1}{y}\) (bể)

Hai vòi cùng chảy vào một bể không có nước thì sau \(12\) giờ thì đầy bể

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\left(1\right)\)

Người ra mở cả hai vòi chảy trong \(4\) giờ được \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{4}{x}+\dfrac{4}{y}\) bể và để vòi một chảy tiếp trong \(14\) giờ nữa thì vòi một chảy được \(\dfrac{14}{x}\) bể

\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{14}{x}=1\)

\(\Rightarrow\dfrac{18}{x}+\dfrac{4}{y}=1\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{18}{x}+\dfrac{4}{y}=1\end{matrix}\right.\)

Giải hệ phương trình trên ta được \(\left\{{}\begin{matrix}x=21\\y=28\end{matrix}\right.\) (thỏa mãn điều kiện)

Vậy thời gian vòi một chảy một mình thì đầy bể là \(21\) giờ, thời gian vòi hai chảy một mình thì đầy bể là \(28\) giờ.

NM
2 tháng 1 2022

gọi x, y là số phần bể mà vòi nước thứ nhất và thứ hai chảy được trong 1 giờ

ta có hệ

\(\hept{\begin{cases}x+y=\frac{1}{15}\\3x+5y=25\%=0.25\end{cases}}\Rightarrow\hept{\begin{cases}3x+3y=0.2\\3x+5y=0.25\end{cases}}\)

\(\Rightarrow2y=0.05\Rightarrow\hept{\begin{cases}y=0.025=\frac{1}{40}\\x=\frac{1}{24}\end{cases}}\) Vậy vòi thứ nhất cần 2 4 giờ, vòi thứ hai cần 40 giờ để chảy đầy bể

17 tháng 12 2022

- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)

Đổi 1h30p=90p

- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:

\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)

- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:

\(15x+20y=\dfrac{1}{5}\left(2\right)\)

(1), (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)

Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.

Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.

6 tháng 11 2023

Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.

Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).

Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:

6 * 2x = 1 (bể đầy)

Từ đó, ta có:

12x = 1

x = 1/12

Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.

Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.

13 tháng 12 2019

Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)

        thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)

Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể

⇒ 1 x + 1 y = 1 6  (1)

vòi thứ  nhất chảy trong  2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể   ⇒ 2. 1 x + 3. 1 y = 2 5  (2)

Từ (1) và (2) ta có hệ phương trình  1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15

Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.

Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.

Gọi thời gian vòi 1 và vòi 2 chảy một mình mình đầy bể lần lượt là x,y

Theo đề, ta có hệ phương trình:

1/x+1/y=1/1,5 và 1/4*1/x+1/3*1/y=1/5

=>1/x=4/15 và 1/y=2/5

=>x=15/4 và y=5/2