Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=5^{2020}+5^{2019}+5^{2018}+5^{2017}=5^{2018}\left(5^2+1\right)+5^{2017}\left(5^2+1\right)\)
\(=\left(5^{2018}+5^{2017}\right)\left(5^2+1\right)=6.5^{2017}.26=12.5^{2016}.65\) chia hết cho 65.
- Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc
Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)
- Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)
Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)
Các dạng khác làm tương tự!
Ta có:\(33^{77}=3^{77}.11^{77}=\left(3^7\right)^{11}.11^{77}=2187^{11}.11^{77}\)
\(77^{33}=7^{33}.11^{33}=\left(7^3\right)^{11}.11^{33}=343^{11}.11^{33}\)
Do \(2188>343\Rightarrow2187^{11}>343^{11}\Rightarrow3^{77}>7^{33}\)
Lại có\(11^{77}>11^{33}\)
\(\Rightarrow33^{77}>77^{33}\)
Vậy\(33^{77}>77^{33}\)
Ta có:
A = \(\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8+6}{10^8-7}=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
Mà \(10^8-7>10^7-8\)
=> \(1+\dfrac{13}{10^7-8}>1+\dfrac{13}{10^8-7}\)
=> A < B
Vậy A < B
Xin lỗi mình kết luận sai vì nhìn nhầm. Đáp án đúng là A > B và cả quá trình trên vẫn đúng nha.
Giá hoa ngày tết so với tháng 11 là:
100 + 20 = 120 (%)
Giá hoa sau tết còn là:
100 – 20 = 80 (%)
hoa sau tết so với tháng 11 là:
Giá hoa sau tết so với tháng 11 là:
100 – 96 = 4 (%)
Đáp số 4 %