Trần Phương Hân
Giới thiệu về bản thân
a) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
b) Ta có ; // suy ra .
Tứ giác có ba góc vuông nên là hình chữ nhật.
Khi đó hai đường chéo cắt nhau tại trung điểm của mỗi đường, mà nên là trung điểm của .
Suy ra thẳng hàng.
c) Để tứ giác là hình vuông thì ta cần hay vuông cân tại
a) Tứ giác có nên là hình chữ nhật.
b) Vì và nên // suy ra (so le trong).
Xét và có:
(giả thiết)
(so le trong)
Vậy (cạnh huyền - góc nhọn)
Suy ra (hai cạnh tương ứng) mà nên .
Tứ giác có hai đường chéo cắt nhau tại là trung điểm của mỗi đường nên là hình bình hành.
Mà suy ra là hình thoi.
c) Để là hình vuông thì hay vừa là đường trung tuyến vừa là đường cao nên vuông cân tại
d) Giả sử cắt tại và cắt tại .
Khi đó có nên cân tại suy ra
cân tại suy ra
Do đó,
Suy ra vuông tại hay
a) Tứ giác có nên là hình chữ nhật.
b) Vì và nên // suy ra (so le trong).
Xét và có:
(giả thiết)
(so le trong)
Vậy (cạnh huyền - góc nhọn)
Suy ra (hai cạnh tương ứng) mà nên .
Tứ giác có hai đường chéo cắt nhau tại là trung điểm của mỗi đường nên là hình bình hành.
Mà suy ra là hình thoi.
c) Để là hình vuông thì hay vừa là đường trung tuyến vừa là đường cao nên vuông cân tại
d) Giả sử cắt tại và cắt tại .
Khi đó có nên cân tại suy ra
cân tại suy ra
Do đó,
Suy ra vuông tại hay
a) Tứ giác có nên là hình chữ nhật.
vuông cân tại có là trung tuyến nên cũng là đường phân giác .
Hình chữ nhật có đường chéo là tia phân giác nên là hình vuông.
b) vuông tại có nên vuông cân tại
Suy ra mà đồng vị nên //
c) Gọi là giao của với suy ra
vuông tại có là đường trung tuyến nên
có là đường trung tuyến mà suy ra vuông tại
a) Ta có suy ra nên và //
Do đó, là hình bình hành.
Lại có nên là hình thoi
b) // suy ra là hình thang.
Mà mà là phân giác nên .
Vậy là hình thang cân.
c) có nên là tam giác cân.
Xét và có:
(giả thiết)
(đối đỉnh)
(so le trong)
Vậy (g.c.g) suy ra (hai cạnh tương ứng).
Khi đó là đường trung tuyến và (hai cạnh tương ứng)
Mà suy ra hay là đường trung tuyến.
Khi đó, có ba đường trung tuyến đồng quy.
a) Ta có và suy ra .
Mặt khác .
Xét và có
( giả thiết)
(chứng minh trên)
Suy ra (g.c.g)
b) Từ suy ra (hai cạnh tương ứng)
Chứng minh tương tự cho và
Suy ra và .
Khi đó
c) Tứ giác là hình thoi vì có bốn cạnh bằng nhau.
Mà có và nên là tam giác vuông cân tại
Suy ra .
Tương tự nên .
Hình thoi có nên nó là hình vuông.
là hình vuông nên
Mà .
Trừ theo vế ta được
Suy ra
Xét tam giác QAM và tam giác NPC có:
góc A = góc C = 90 độ
AQ=NC(cmt)
AM=CP(gt)
=>Tam giác QAM= tam giác NPC(c.g.c)
c)=> NP = MQ ( hai cạnh tương ứng)
Chứng minh tương tự như phần b ta có: Tam giác QAM= tam giác PDQ và tam giác QAM= tam giác MBN
Khi đó: MQ=PQ, MN=MQ và góc AMQ= góc DQP
Mà góc AMQ+AQM=90 độ
=>góc DQP+ góc AQM= 90 độ
Do đó góc MQP = 90 độ
tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi
Lại có góc MQP = 90 độ nên là hình vuông
Vậy tứ giác MNPQ là hình vuông
a) Tứ giác DKMN có 3 góc D=K=N= 90 độ
=> Tg DKMN là hình chữ nhật
Vậy tg DKMN là hình chữ nhật
b) Vì DKMN là hình chữ nhật nên DF//MH
Xét 2 tam giác KFM và NME có:
góc K= góc N = 90 độ
FM=ME(gt)
góc KMF = góc E( đồng vị)
=> Tam giác KFM = tam giác NME (cạnh huyền-góc nhọn)
=>KF=MN( hai cạnh tương ứng) mà MN=DK nên DF=2DK và MH=2MN
Do đó DF=MH
Tứ gáic DFMH có DF//MH, DF=MH nên là hình bình hành
Do đó hai đường chéo DM,FH cắt nhau tại trung điểm O của mỗi đường hay F,O,H thẳng hàng
Vậy 3 điểm F,O,H thẳng hàng
c) Để hình chữ nhật DKMN là hình vuông thì DK=DN(1)
Mà DK=1/2DF và DN=KM=NE nên DN=1/2DE(2)
Từ (1),(2) suy ra DF=DE
Vậy tam giác DFE cần thêm điều kiện cân tại D
Ta có
IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Ta có
MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB
Mà
=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)
b/
Ta có
MI//AB (cmt) => MK//AB
AK//MC (cạnh đối hbh AMCK) => AK//MB
=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Để AMCK là hình vuông => AM là đường cao của tg ABC
Mà AM là trung tuyến của tg ABC (gt)
=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)
=> Để AMCK là hình vuông thì tg ABC vuông cân tại A
Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ
Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ
Vậy tam giác BEH vuông tại H
b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE
Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)
Tứ giác EFGH có EH//FG, EH=FG
=>tứ giác EFGH là hình bình hành
Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật
Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông
Vậy EFGH là hình vuông