K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(3\left(x-2\right)^2+\left(x-1\right)^3-x^3=-7\)

\(\Leftrightarrow3x^2-12x+12+x^3-3x^2+3x-1-x^3=-7\)

\(\Leftrightarrow-9x=-18\)

hay x=2

b: ta có: \(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2-5x+3\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+x-6x^2+5x-3=0\)

\(\Leftrightarrow17x=-5\)

hay \(x=-\dfrac{5}{17}\)

c: Ta có: \(\left(2x-1\right)^3+12\left(x-1\right)\left(x+1\right)=14x-13\)

\(\Leftrightarrow8x^3-12x^2+6x-1+12x^2-12-14x+13=0\)

\(\Leftrightarrow8x^3-8x=0\)

\(\Leftrightarrow8x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

31 tháng 8 2021

a) \(3\left(x-2\right)^2+\left(x-1\right)^3-x^3=-7\)

\(\Rightarrow3x^2-12x+12+x^3-3x^2+3x-1-x^3=-7\)

\(\Rightarrow-9x=-18\)

\(\Rightarrow x=2\)

b) \(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2-5x+3\)

\(\Rightarrow x^3+6x^2+12x+8-x^3+x=6x^2-5x+3\)

\(\Rightarrow18x=-5\)

\(\Rightarrow x=-\dfrac{5}{18}\)

c) \(\left(2x-1\right)^3+12\left(x-1\right)\left(x+1\right)=14x-13\)

\(\Rightarrow8x^3-12x^2+6x-1+12x^2-12=14x-13\)

\(\Rightarrow8x^3-8x=0\)

\(\Rightarrow8x\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)(1)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\)(2)

Ta có: M là trung điểm của BC(gt)

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

hay DE//BC(đpcm)

a: \(4x^2-12x+9=\left(2x-3\right)^2\)

b: \(4x^2+4x+1=\left(2x+1\right)^2\)

c: \(36x^2+12x+1=\left(6x+1\right)^2\)

d: \(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

10 tháng 9 2021

a)\(=\left(2x\right)^2-2.2x.3+3^2\)

\(=\left(2x+3\right)^2\)

b)\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

NV
25 tháng 3 2022

4.

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(S=\sum\dfrac{\dfrac{1}{y^2}}{\dfrac{1}{x}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}=\sum\dfrac{x^3}{x^2+y^2}=\sum\left(x-\dfrac{xy^2}{x^2+y^2}\right)\)

\(S\ge\sum\left(x-\dfrac{xy^2}{2xy}\right)=\sum\left(x-\dfrac{y}{2}\right)=\dfrac{x+y+z}{2}=\dfrac{3}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
25 tháng 3 2022

5.

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

Đặt vế trái là P

\(P=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)

Quay lại dòng 3 của bài số 4

11 tháng 11 2021

\(a,=\left(6x+1-6x+1\right)^2=4\\ b,=3x^2-6x-5x+5x^2-8x^2-24=-11x-24\\ c,=14x^2+x-3-5x^2-18x+8-9x^2+17x=5\\ d,=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)

11 tháng 11 2021

a) \(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2=\left(6x+1-6x+1\right)^2=2^2=4\)

b) \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)

c) \(\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x=\left(7x-3\right).2x+\left(7x-3\right)-\left[\left(5x-2\right).x+4\left(5x-2\right)\right]-9x^2+17x=14x^2-6x+7x-3-\left(5x^2-2x+20x-8\right)-9x^2+17x=5x^2+18x-3-\left(5x^2+18x-8\right)=5x^2+18x-3-5x^2-18x+8=5\)

d) \(\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)=\left(6x-5\right).x+8\left(6x-5\right)-\left[\left(3x-1\right).2x+3\left(3x-1\right)\right]-36x+27=6x^2-5x+48x-40-\left(6x^2-2x+9x-3\right)-36x+27=6x^2+7x-13-\left(6x^2+7x-3\right)=6x^2+7x-13-6x^2-7x+3=-10\)

10 tháng 10 2021

\(P=\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left(\dfrac{x}{y}-\dfrac{y}{x}\right)\left(\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}\right)\)

\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x-y\right)}-\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x+y\right)}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{x^2+2xy+y^2-x^2+2xy-y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+xy+y^2-x^2+xy-y^2}{xy}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\cdot\dfrac{4xy}{\left(x-y\right)\left(x+y\right)}\)

\(=2-4=-2\)