Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)
\(\Rightarrow I\left(-1;3\right)\)
b.
Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)
Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)
Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)
Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)
\(\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IA}\)
\(=\overrightarrow{IB}+2\cdot\overrightarrow{IM}\)
\(=\overrightarrow{IM}\)
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
1/ Có G là trọng tâm tam giác ABC
Vì \(C\in Oy;G\in Ox\Rightarrow x_C=0;y_G=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}\\y_G=\frac{y_A+y_B+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_G=\frac{1+5+0}{3}\\0=\frac{-1-3+y_C}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_G=2\\y_C=4\end{matrix}\right.\Rightarrow C\left(0;4\right);G\left(2;0\right)\)
2/ \(\overrightarrow{AE}=3\overrightarrow{AB}-2\overrightarrow{AC}\)
\(\Rightarrow\left(x_E-x_A;y_E-y_A\right)=3\left(x_B-x_A;y_B-y_A\right)-2\left(x_C-x_A;y_C-y_A\right)\)
\(\Leftrightarrow\left(x_E-2;y_E-5\right)=3\left(-1;-4\right)-2\left(1;-2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_E-2=-3-2\\y_E-5=-12+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_E=-3\\y_E=-3\end{matrix}\right.\Rightarrow E\left(-3;-3\right)\)
3/ \(\overrightarrow{OA}=\overrightarrow{BC}\Rightarrow\left(x_A-x_O;y_A-y_O\right)=\left(x_C-x_B;y_C-y_B\right)\)
\(\Leftrightarrow\left(-2;1\right)=\left(x_C-4;y_C-5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C-4=-2\\y_C-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=2\\y_C=6\end{matrix}\right.\Rightarrow C\left(2;6\right)\)
P/s: Kt lại số lịu hộ tui nhoa, nhỡ may soai thì tiu :)
(mk lm câu a theo cái đề bn đã xứa nha )
a) giả sử : \(I\) có tọa độ \(\left(x_I;y_I\right)\)
ta có : \(I\) là trung điểm của \(AB\) \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2-4}{2}=-1\\y_I=\dfrac{4+2}{2}=3\end{matrix}\right.\)
vậy điểm \(I\) có tọa độ là \(I\left(-1;3\right)\)
theo đề bài ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\) (1)
mà \(I\) là trung điểm \(AB\) \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) (2)
từ (1) và (2) ta có : \(\overrightarrow{MA}=\overrightarrow{IA}\) \(\Leftrightarrow\) \(M\equiv I\)
vậy \(M\equiv I\) thì ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\)
b) (lm theo đề đã sữa)
giả sử : điểm \(N\) có tọa độ là \(\left(x_N;y_N\right)\)
vì gốc \(O\) là trọng tâm của tam giác \(ABN\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+x_B+x_N}{3}=0\\\dfrac{y_A+y_B+y_N}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A+x_B+x_N=0\\y_A+y_B+y_N=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-4+x_N=0\\4+2+y_N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_N=2\\y_N=-6\end{matrix}\right.\)
vậy điểm \(N\) có tọa độ là \(N\left(2;-6\right)\) thì gốc \(O\) là trọng tâm của tam giác \(ABN\)