K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

a . Vì tam giác ABC cân tại A =>góc ABC = ACB=>góc ACN=gocsABM(kề bù với 2 góc = nhau ACB và ABC)

(Từ đó) dễ chứng minh tam giác ABM= tam giác ACN(c.g.c)=> AN=AM, góc AMB=gócANC

Vậy tam giác MNA cân

b. Dễ chứng minh hai tam giác vuông MHB và CKn bằng nhau(ch.gn)=> CK=BH(2 cạnh tương ứng) và KN=Hm( 2 cạnh tương ứng)

c.Vì AM=AN mà MH=NK=>AK=MH

d.Góc CBO=góc BCO( góc đối đỉnh của 2 góc bằng nhau HBM và KCN)

Vậy tam giác BCO là tam giác cân

e.mk quên rùi

 

 

 

30 tháng 1 2016

cho \(\Delta\)ADE cân tại A. Trên cạnh De lấy các điểm B, C. sao cho: DB=EC <\(\frac{1}{2}\)DE.

a/ \(\Delta ABC\)là tam giác gì? Vì sao?

b/ Kẻ BM vuông góc với AD. CN vuông góc với AC... C.minh: BM=CN

c/ gọi I là giao điểm của MB và CN. \(\Delta IBC\)là tam giác gì? vì sao?

d/ C.minh AI là tia phân giác của gÓc BAC. :)

-> bạn ơi piết làm câu này ko.. làm hộ mình nha :))

1 tháng 3 2019

AI NHANH MIK CHO 3  NHA

1 tháng 3 2019

 tự kẻ hình :

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)         (1)

     góc ABC = góc ACB (đl)

góc ABC + góc ABM = 180 (kb)

góc ACB + góc ACN = 180 (kb)

=> góc ABM = góc ACN          (2)

xét tam giác ABM  và tam giác ACN có : BM = CN (gt) và (1); (2)

=> tam giác ABM = tam giác ACN (c-g-c)

=> MA = NA (đn)

=> tam giác AMN cân tại A (đn)

b, xét tam giác HBM và tam giác KCN có : MB = CN (gt)

góc M = góc N do tam giác AMN cân (câu a)

góc MHB = góc NKC = 90 do ...

=> tam giác HBM = tam giác KCN (ch - gn)

=> HB = CK (đn)

c, có AM = AN (Câu a)

AM = AH + HM

AN = AK + KN 

HM = KN do tam giác HBM = tam giác KCN (câu b)

=> HM = KN 

5 tháng 8 2016

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK(2 cạnh tương ứng)

c) ta có : AM=AN  (theo a) 

               HM=KN (tam giác MHB=tam giác NKC)

AM = AH+HM

AN= AK+ KN 

=> AH= AK

d) tam giác MHB=tam giác NKC(theo b) 

=> góc HBM=góc KCN(2 góc tương ứng)

góc HBM=góc OBC(đối đỉnh)

góc KCN=góc OCB(đối đỉnh)

=> góc OBC=góc OCB

=> tam giác OBC cân ở O

e) tam giác ABC có AB=AC ; góc BAC=60độ 

=> tam giác ABC đều 

=> AB=AC=BC

mà BC=BM(gt)

=> BM=AB

=>tam giác ABM cân ở B

góc ABC + góc ABM=180độ (kề bù)

=> góc ABM =180độ - góc ABC

                     =180độ-60độ

                     =120độ

tam giác ABC cân ở B 

=> góc BAM=góc BMA =(180độ-góc ABM) / 2=\(\frac{180^0-120^0}{2}=\frac{60^0}{2}=30^0\)

vậy góc AMN=30độ

5 tháng 8 2016

bạn tự vẽ hình nha

a) tam giác ABC cân tại A nên hai góc ABC= ACB

Ta có: góc ABM= 180 độ - góc ABC ( kề bù )

           góc ACN= 180 độ - ACB ( kề bù )

Vậy góc ABM= góc ACN

Xét tam giác ABM và tg ACN có:

AB=AC ( tg ABC cân tại A )

góc ABM= góc ACN ( cmt )

BM=CN(gt)

=> tg ABM= tg ACN ( c-g-c)

=> AM=AN( 2 cạnh tương ứng )

=> tg AMN cân tại A

b) Vì tg AMN cân tại A nên góc AMN= góc ANM

Xét tg HBM và tg KCN có:

góc MHB= góc NKC( = 90 độ )

BM=CN ( gt)

góc AMN= góc ANM ( tg AMN cân tại A)

=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )

=> BH= CK ( 2 cạnh tương ứng )

c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )

Lại có: HM+HA= AM; KN+KA= AN

Vì AM= AN ( tg AMN cân tại A )

     HM= HN                                   

=> AH= AK

d) tg ABM = tg CKN => góc HBM = góc KCN

góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )

=> tg OBC cân tại O

e) Khi góc BAc = 60 độ => tg ABC đều

=> BM = AB 

=> tg ABM cân tại B

Ta có : góc AMB = \(\frac{1}{2}\) . ABC = \(\frac{1}{2}.60\) = 30 độ

góc A= 180 độ - 30 độ - 30 độ = 120 độ

góc KCN = góc BCO = 60 độ

28 tháng 6 2021

A B C M N H K O

e) Tam giác ABC cân tại A có \(\widehat{BAC}=60^o\)nên tam giác ABC là tam giác đều

Ta có : \(\widehat{ABM}+\widehat{ABC}=180^o\)

\(\Rightarrow\widehat{ABM}=180^o-\widehat{ABC}=180^o-60^o=120^o\)

Tam giác ABM cân tại B ( BM = BA = BC )

\(\Rightarrow\widehat{BMA}=\widehat{BAM}=\frac{180^o-\widehat{ABM}}{2}=\frac{180^o-120^o}{2}=30^o\)

Tam giác OBC là tam giác đều vì OBC cân tại O mà \(\widehat{OBC}=\widehat{HBM}=90^o-\widehat{BMA}=90^o-30^o=60^o\)

28 tháng 6 2021

dfr5eu76o7yregrvfcawexrt6uyhrwr