Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-1}{3}=\dfrac{2-x}{-2}\)
\(\Rightarrow-2\left(2x-1\right)=3\left(2-x\right)\)
\(\Rightarrow-4x+2=6-3x\Rightarrow x=-4\)
(2x+1)(y+2)=4
⇒(2x+1) và (y+2) ∈ Ư (4) = { 1,-1,2,-2,4,-4 }
⇒2x+1=1 ⇒2x=1-1=0 ⇒x=0:2=0
y+2=4 y=4-2=2 y=2
⇒2x+1=-1 ⇒2x=-1-1=-2 ⇒x=-2:2=-1
y+2=-4 y=-4-2=-6 y=-6
⇒2x+1=2 ⇒2x=2-1=1 ⇒x=1:2=0,5
y+2=-2 y=-2-2=-4 y=-4
\(\left(2x-1\right)\left(y-2\right)=4\)
\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Mà \(2x+1\) lẻ
\(\Rightarrow2x+1=\pm1\)
Xét \(2x+1=1\Rightarrow x=0\)
\(\Rightarrow y-2=4\Rightarrow y=6\)
Xét \(2x+1=-1\Rightarrow x=-1\)
\(\Rightarrow y-2=-4\Rightarrow y=-2\)
\(-\frac{1}{4}x+\frac{3}{2}x-\frac{2}{3}x+6=\)\(0\)
\(\Rightarrow\)\(-\frac{1}{4}x+\frac{3}{2}x-\frac{2}{3}x\)\(=-6\)
\(\Rightarrow\)\(x\left(-\frac{1}{4}+\frac{3}{2}-\frac{2}{3}\right)\)\(=-6\)
\(\Rightarrow\)\(x.\frac{7}{12}\)\(=-6\)
\(\Rightarrow\)\(x\)\(=-\frac{72}{7}\)
\(\text{Học tốt!!!}\)
a. 8 . 2x - 5 - 32 = 119
8 . 2x - 5 - 9 = 119
8 . 2x - 5 = 119 + 9
8 . 2x - 5 = 128
2x - 5 = 128 : 8
2x - 5 = 16
2x - 5 = 24 (cùng cơ số)
x - 5 = 4
x = 4 + 5; x = 9
b. 5x + 2x = 62 - 50
7x = 36 - 1
7x = 35
x = 5
-3x+(-9)+5x-5=-10
(-3x+5x)+(-9-5)=-10
-2x+(-14)=-10
-2x=-10-(-14)
-2x=24
x=24:(-2)
x=-12. chúc bạn học tối nha
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
Tham khảo:Tìm x thuộc N , biết:a) 2x + 2x+3 =144b) (4x -1)2 =25 x 9 - Hoc24
\(a,\Rightarrow x+2=-40\\ \Rightarrow x=-42\\ b,\Rightarrow6x-7-2x=5\\ \Rightarrow4x=12\Rightarrow x=3\\ c,\Rightarrow68-56-x=-2\\ \Rightarrow12-x=-2\\ \Rightarrow x=14\)
=>2x+1/2=0 hoặc 2x-3=0
=>x=-1/4 hoặc x=3/2
\(\left[{}\begin{matrix}\dfrac{1}{2}+2x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)